

INFORME MÍNIMO TÉCNICO

BESS DIEGO DE ALMAGRO SUR - NUP 3416

FECHA	REVISIÓN	COMENTARIOS	PREPARADO	REVISADO	APROBADO
10/11/2023	R1B	Para entrega a Colbún	José Araya	José Espinoza	Francisco Beltrán

REVISIÓN 1B

SEGUIMIENTO DE DOCUMENTACIÓN

El presente informe corresponde a las pruebas de Mínimo Técnico en el BESS Diego de Almagro Sur, y posee el siguiente registro de documentación:

DOCUMENTO	FECHA	REVISIÓN	COMENTARIOS	PREPARADO	REVISADO	APROBADO
Mínimo Técnico BESS DAS	02/10/2023	RO	Para entrega a Colbún	José Araya	José Espinoza	Francisco Beltrán
Mínimo Técnico BESS DAS	04/10/2023	R1A	Se atienden observaciones de Colbún	José Araya	José Espinoza	Francisco Beltrán
Mínimo Técnico BESS DAS	10/11/2023	R1B	Se atienden observaciones de Colbún	José Araya	José Espinoza	Francisco Beltrán

TABLA DE CONTENIDO

1	Ir	ntroduc	ción	8
2	C) bjetivo:	S	8
3	N	lomencl	latura	9
4	Α	nteced	entes	10
	4.1	Anto	ecedentes Generales	11
	4	.1.1	Descripción del proyecto	11
	4	.1.2	Diagrama unilineal zona de interconexión del proyecto	14
	4.2	Anto	ecedentes técnicos del sistema de almacenamiento de baterías (BESS)	16
	4	.2.1	Conductor de Media Tensión en 33kV	19
	4	.2.2	Transformadores BESS 33/0.69kV 4.4 MVA	20
	4	.2.3	Transformador de servicios auxiliares 33/0.4kV	21
	4	.2.4	Inversores	22
	4	.2.5	Baterías	23
	4	.2.6	Línea Diego de Almagro Sur – Illapa 1x220kV	25
5	D	etermir	nación de Mínimo Técnico BESS Diego de Almagro Sur	27
	5.1	Exig	encias normativas y descripción de ensayos	27
	5	.1.1	Requerimientos normativos	27
	5	.1.2	Pruebas requeridas	28
	5	.1.3	Parámetros para reportar	30
	5.2	Prue	eba de Mínimo Técnico en modo Descarga (Prueba 1)	32
	5	.2.1	Determinación de Potencia Mínima Neta en Modo Descarga	34
	5	.2.2	Determinación de Potencia Mínima Bruta en Modo Descarga	34
	5.3	Prue	eba de Mínimo Técnico en modo Carga (Prueba 2)	38
	5	.3.1	Determinación de Potencia Mínima Neta en Modo Carga	40
	5	.3.2	Determinación de Potencia Mínima Bruta en Modo Carga	40
	5.4	Prue	eba de Mínimo Técnico ciclo de trabajo en modo Descarga (Prueba 3)	42
	5	.4.1	Determinación de Potencia Mínima Ciclo de Trabajo Neta en Modo Descarga	44
	5	.4.2	Determinación de Potencia Mínima Ciclo de Trabajo Bruta en Modo Descarga	44
	5.5	Prue	eba de Mínimo Técnico ciclo de trabajo en modo Carga (Prueba 4)	46
	5	.5.1	Determinación de Potencia Mínima Ciclo de Trabajo Neta en Modo Carga	48
	5	.5.2	Determinación de Potencia Mínima Ciclo de Trabajo Bruta en Modo Carga	48

6	Cond	clusiones	50
ΑN	EXO I	Antecedentes técnicos del PFV Diego de Almagro Sur	53
I	.1.	Transformadores de bloque BT / MT	54
I	.2.	Transformador de potencia SE Inca de Oro	55
I	.3.	Transformador Zig-Zag (Reactor de neutro)	56
I	.4.	Cables de la red de media tensión en 33kV	57
I	.5.	Banco de condensadores	59
I	.6.	Transformador de servicios auxiliares PFV DAS 33/0.4kV	60
ı	.7.	Características generales de inversores solares	61
ΑN	EXO II	Datasheet Inversor y consumos auxiliares PFV	64
ΑN	EXO III	Datasheet de los paneles solares	68
	EXO IV	, , , , , , , , , , , , , , , , , , , ,	_
de	Almag	ro Sur	70
ΑN	EXO V	Especificaciones instrumentos de medición	74
ΑN	EXO V	l Archivos adjuntos	78

ÍNDICE DE FIGURAS

Figura 4.1: Ubicación geográfica referencial PFV y BESS Diego de Almagro Sur. Fuente: Google Earth	12
Figura 4.2: Mapa de ubicación del PFV y BESS Diego de Almagro Sur en el SEN	13
Figura 4.3: Diagrama unilineal zona de influencia sin proyecto	14
Figura 4.4: Diagrama unilineal zona de influencia con proyecto	15
Figura 4.5: Diagrama unilineal MT e inversores – BESS y PFV Diego de Almagro Sur. Parte 1	16
Figura 4.6: Diagrama unilineal MT e inversores – BESS y PFV Diego de Almagro Sur. Parte 2	17
Figura 4.7: Diagrama unilineal MT e inversores – BESS y PFV Diego de Almagro Sur. Parte 3	17
Figura 4.8: Parámetros de conductores para conexión de proyecto BESS	19
Figura 4.9: Información técnica de transformador elevador CB3 [6] [11].	20
Figura 4.10: Información técnica de transformador elevador CB4 [6] [11].	20
Figura 4.11:Captura de parámetros del Transformador de SSAA CB3, Fabricante RHONA	21
Figura 4.12:Captura de parámetros del Transformadores de SSAA CB4, Fabricante RHONA	21
Figura 4.13: Características de ficha técnica de los inversores para los BESS [7]	22
Figura 4.14: Curvas de capacidad de potencia activa y reactiva de los inversores FP4390K4H [8]	22
Figura 4.15: Aportes de los inversores FP4390K4H al cortocircuito, de acuerdo con documentación de	
fabricante [9]	
Figura 4.16: Foto de placa módulos de baterías BESS DAS	23
Figura 4.17: Curva de degradación de capacidad de almacenamiento BESS DAS. Fuente: Wartsila	23
Figura 4.18: Configuración conjunto baterías por inversor de 4.39 MVA	24
Figura 4.19: Silueta de torre de suspensión S220.1M h=20.4	25
Figura 5.1: Curva PQ teórica BESS y mínimo técnico en modo descarga y modo carga	29
Figura 5.2: Esquema de planta de generación BESS acoplada con generación solar, configuración específica	de
central Diego de Almagro Sur	30
Figura 5.3: Registros de potencia activa en paño J1 SE Inca de Oro. Prueba de mínimo técnico (Descarga)	32
Figura 5.4: Registros de potencia reactiva en paño J1 SE Inca de Oro. Prueba de mínimo técnico (Descarga).	32
Figura 5.5: Registros de potencia activa en paño F1 SE Inca de Oro. Prueba de mínimo técnico (Descarga)	33
Figura 5.6: Registros de potencia activa en paño F17 SE Inca de Oro. Prueba de mínimo técnico (Descarga)	33
Figura 5.7: Registros de potencia activa SS.AA. BESS 1. Prueba de mínimo técnico (Descarga)	33
Figura 5.8: Registros de potencia activa SS.AA. BESS 2. Prueba de mínimo técnico (Descarga)	34
Figura 5.9: Registros de potencia activa en paño J1 SE Inca de Oro. Prueba de mínimo técnico (Descarga)	38
Figura 5.10: Registros de potencia reactiva en paño J1 SE Inca de Oro. Prueba de mínimo técnico (Descarga))38
Figura 5.11: Registros de potencia activa en paño F1 SE Inca de Oro. Prueba de mínimo técnico (Descarga).	38
Figura 5.12: Registros de potencia activa en paño F17 SE Inca de Oro. Prueba de mínimo técnico (Descarga)	39
Figura 5.13: Registros de potencia activa SS.AA. BESS 1. Prueba de mínimo técnico (Descarga)	39
Figura 5.14: Registros de potencia activa SS.AA. BESS 2. Prueba de mínimo técnico (Descarga)	39
Figura 5.15: Registros de potencia activa en paño J1 SE Inca de Oro. Prueba de mínimo técnico (Descarga)	42
Figura 5.16: Registros de potencia reactiva en paño J1 SE Inca de Oro. Prueba de mínimo técnico (Descarga))42
Figura 5.17: Registros de potencia activa en paño F1 SE Inca de Oro. Prueba de mínimo técnico (Descarga).	42
Figura 5.18: Registros de potencia activa en paño F17 SE Inca de Oro. Prueba de mínimo técnico (Descarga)	43
Figura 5.19: Registros de potencia activa SS.AA. BESS 1. Prueba de mínimo técnico (Descarga)	43
Figura 5.20: Registros de potencia activa SS.AA. BESS 2. Prueba de mínimo técnico (Descarga)	43

Figura 5.21: Registros de potencia activa en paño J1 SE Inca de Oro. Prueba de mínimo técnico ciclo de tra	-
(Carga)	46
Figura 5.22: Registros de potencia reactiva en paño J1 SE Inca de Oro. Prueba de mínimo técnico ciclo de	
trabajo (Carga)	
Figura 5.23: Registros de potencia activa en paño F1 SE Inca de Oro. Prueba de mínimo técnico ciclo de tra	•
(Carga)	
Figura 5.24: Registros de potencia activa en paño F17 SE Inca de Oro. Prueba de mínimo técnico ciclo de t (Carga)	
Figura 5.25: Registros de potencia activa SS.AA. BESS 1. Prueba de mínimo técnico ciclo de trabajo (Carga))47
Figura 5.26: Registros de potencia activa SS.AA. BESS 2. Prueba de mínimo técnico ciclo de trabajo (Carga))47
Figura 6.1: Diagrama unilineal simplificado SE Elevadora Inca de Oro 220/33kV	53
Figura 6.2: Configuración de alimentador con 4 inversores - PFV Diego de Almagro Sur	54
Figura 6.3: Extracto placas transformadores Zig-Zag.	56
Figura 6.4: Extracto HCTG Resistencia de neutro de reactor.	56
Figura 6.5: Detalle cables red media tensión 33kV	57
Figura 6.6: Diagrama unilineal de alimentadores y centros de transformación PFV Diego de Almagro Sur	58
Figura 6.7: Fotos de placa banco de condensadores	59
Figura 6.8:Captura de parámetros del Transformadores de SSAA PFV DAS, Fabricante RHONA	60
Figura 6.9: Características centro de transformación MVPS 4600-S2 (Fuente: Fabricante SMA)	61
Figura 6.10: Corrientes nominales y de cortocircuito MVPS 4600-S2 (Fuente: Fabricante SMA)	62
Figura 6.11: Curvas de capacidad de potencia activa y reactiva 25°C y tensión de red U≥Un – Inversores SN	MA SC
4600-UP . (Fuente: Datasheet fabricante)	62
Figura 6.12: Curvas de capacidad de potencia activa y reactiva 25°C y tensión de red U=0.9Un – Inversore	s SMA
SC 4600-UP . (Fuente: Datasheet fabricante)	63
Figura 6.13: Placa de datos Centro de trasnformación tipo MVPS-4600 S2- PFV Diego de Almagro Sur	66
Figura 6.14: Consumo de servicios auxiliares en un día soleado	
Figura 6.15: Consumo de servicios auxiliares en un día noublado	67
Figura 6.16: Datasheet instrumento de medida PURE BlackBox marca Elspec	74
Figura 6.17: Datasheet instrumento de medida G4500 marca Elspec	75

ÍNDICE DE TABLAS

Tabla 4.1: Características de conductor de fase	25
Tabla 4.2: Características de cable de guardia. Red de media tensión en 33kV	26
Tabla 5.1: Promedio variables registradas durante la prueba de mínimo técnico (Descarga)	34
Tabla 5.2: Cálculo de pérdidas de los transformadores de SS.AA.	35
Tabla 5.3: Cálculo de pérdidas del cobre en los alimentadores F1 y F17	
Tabla 5.4: Cálculo de pérdidas de los transformadores colectores 0.69/33kV	36
Tabla 5.5: Resumen pérdidas sistema colector BESS.	36
Tabla 5.6: Promedio variables registradas durante la prueba de mínimo técnico (Carga)	39
Tabla 5.7: Cálculo de pérdidas de los transformadores de SS.AA	40
Tabla 5.8: Cálculo de pérdidas del cobre en los alimentadores F1 y F17	41
Tabla 5.9: Cálculo de pérdidas de los transformadores colectores 0.69/33kV	
Tabla 5.10: Resumen pérdidas sistema colector BESS.	41
Tabla 5.11: Promedio variables registradas durante la prueba de mínimo técnico para ciclo trabajo (Desca	
Tabla 5.12: Cálculo de pérdidas de los transformadores de SS.AA.	
Tabla 5.13: Cálculo de pérdidas del cobre en los alimentadores F1 y F17	
Tabla 5.14: Cálculo de pérdidas de los transformadores colectores 0.69/33kV	
Tabla 5.15: Resumen pérdidas sistema colector BESS.	45
Tabla 5.16: Promedio variables registradas durante la prueba de mínimo técnico para ciclo trabajo (Carga)	47
Tabla 5.17: Cálculo de pérdidas de los transformadores de SS.AA	48
Tabla 5.18: Cálculo de pérdidas del cobre en los alimentadores F1 y F17	49
Tabla 5.19: Cálculo de pérdidas de los transformadores colectores 0.69/33kV	49
Tabla 5.20: Resumen pérdidas sistema colector BESS.	49
Tabla 6.1: Resumen de potencias calculadas y registradas asociadas a pruebas de mínimo técnico	51
Tabla 6.2: Resumen de potencias calculadas y registradas asociadas a pruebas de mínimo técnico para cicl	o de
trabajo	51
Tabla 6.3: Parámetros eléctricos de transformadores elevadores PFV Diego de Almagro Sur. ANEXO IV	54
Tabla 6.4: Parámetros eléctricos del transformador de poder de la SE Inca de Oro	55
Tabla 6.5: Componentes principales del centro de transformación MVPS 4600-S2 (Fuente: Fabricante SMA	۱)61

1 Introducción

Colbún S.A. desarrolla el proyecto de sistema de almacenamiento de energía por medio de batería (BESS) de 8MW/32MWh y NUP 3416, el cual se divide en dos (2) grupos de baterías por una potencia de 4MW cada uno, teniendo una conexión en el Switchgear 33kV de la SE Inca de Oro, ubicada en la Región de Atacama.

El proyecto BESS se conecta a las celdas en reserva del proyecto Parque Fotovoltaico (PFV) Diego de Almagro Sur, el cual entró en operación el mes de Julio del 2022, y que estaban instaladas para este objetivo. El PFV Diego de Almagro Sur posee una potencia instalada de 232 MWp/211.6MW de capacidad total, la energía del conjunto BESS más PFV Diego de Almagro Sur se evacuará a través de una línea de transmisión de circuito simple de 220 kV y 2.6 km de longitud que se conectará a la subestación Illapa 220 kV. Se totaliza una potencia total generada a nivel de inversores solares y del sistema de almacenamiento de baterías de 219.6 MW.

En el contexto del proceso de conexión y operación comercial del BESS es que se desarrollaron las pruebas de: Determinación de mínimo técnico, determinación de máxima potencia, parámetros proceso de partida y detención de unidades generadoras y validación de modelo dinámico. En el presente informe se entregan los resultados y conclusiones obtenidos en los ensayos de campo relacionados a la determinación del Mínimo Técnico del BESS Diego de Almagro Sur, realizadas en el mes de agosto del 2023.

2 OBJETIVOS

El presente informe tiene como objetivo determinar el mínimo técnico del BESS Diego de Almagro Sur, para los modos de operación de carga y descarga. Las mediciones se realizan dando cumplimiento al Anexo Técnico de la NTSyCS "Determinación de Mínimos Técnicos en Unidades Generadoras", septiembre del 2020, y bajo las recomendaciones del Coordinador Eléctrico Nacional (CEN).

3 Nomenclatura

Las abreviaturas utilizadas tienen el siguiente significado:

BESS Battery Energy Storage System.

CEN Coordinador eléctrico nacional

EO Entrada en operación

Gx Generación

NTSyCS Norma técnica de seguridad y calidad de servicio, septiembre 2020

NUP Número único de proyecto

PES Puesta en servicio

pu Por unidad

PFV Parque solar fotovoltaico

SEN Sistema eléctrico nacional

SE Subestación

SOC State of Charge

Tx Transmisión

4 ANTECEDENTES

Para llevar a cabo el presente estudio se toman en cuenta los siguientes documentos:

- [1]. Norma técnica de seguridad y calidad de servicio, CNE, septiembre 2020.
- [2]. Portal infotécnica del CEN.
- [3]. Portal WEB CEN, operación real del sistema.
- [4]. NUP 1265 Informe Mínimo Técnico PFV Diego de Almagro Sur REV _3.
- [5]. PVDA-PV01-5-e1-MC-01-1, Memoria de cálculo de cables MT, Colbún Dessau ingeniería.
- [6]. "Transformer datasheet and manual", manual y placa de datos transformador elevador BESS, Wartsila Power Electronics.
- [7]. "Datasheets, document number DDA-SPE-PEE-0001", ficha de datos inversores FP4390k4H, Wartsila Power Electronics.
- [8]. "PQ curves, document number DDA-SFD-PEE-0001", curva PQ inversores FP4390k4H, Wartsila Power Electronics.
- [9]. P21213-WAR-DL-0096_01.pdf (Documento que valida el aporte al cortocircuito de los inversores de los equipos BESS).
- [10]. PVDA-S42-5-e1-IN-14-0, Cálculo de niveles de cortocircuito y verificación de capacidad de ruptura de interruptores PFV Diego de Almagro Sur, Colbún Dessau ingeniería.
- [11]. Pruebas de fabrica transformadores elevadores ELTAS: "P21213-WAR-DL-0118_01.pdf" y "P21213-WAR-DL-0119 01".
- [12]. Anexo Técnico: Pruebas de Potencia Máxima en Unidades Generadoras, CNE.
- [13]. Anexo Técnico: Determinación de Mínimos Técnicos en Unidades Generadoras, CNE.
- [14]. Anexo Técnico: Determinación de Parámetros para los procesos de Partida y Detención de Unidades Generadoras, CNE.
- [15]. Puesta en Servicio de Unidades Generadoras Aplicación de Anexos Técnicos, CEN.
- [16]. Norma IEC 62933 Electrical energy storage (EES) systems, Unit parameters and testing methods.
- [17]. Norma IEEE: Standard Test Procedures for Electric Energy Storage Equipment and Systems for Electric Power Systems Applications.
- [18]. Procedimiento de pruebas (Pmax-MT-PPyD) BESS rev 1, Colbún B&B Asociados, julio 2023.
- [19]. Technical Information Document Sunny Central UP (-US), SMA Solar Technology, march 2020.

4.1 ANTECEDENTES GENERALES

4.1.1 Descripción del proyecto

El proyecto consiste en la incorporación de almacenamiento de energía por medio de baterías (BESS) con una potencia nominal de 8 MW y una capacidad de almacenamiento de 32 MWh con conexión a la SE Inca de Oro, asociada al proyecto PF Diego de Almagro Sur, cuya conexión se realizará al Switchgear en 33kV de la SE Inca de Oro, subestación que cuenta con celdas disponibles, actualmente en reserva para la conexión del BESS. El proyecto BESS junto al PF Diego de Almagro Sur se encuentran emplazados en la Comuna de Diego de Almagro, Provincia de Chañaral, Región de Atacama, aproximadamente a unos 25 km al sur de la ciudad Diego de Almagro y a 92.5 km al noreste de la cuidad de Copiapó, como se puede observar de forma referencial en la Figura 4.1.

La generación fotovoltaica del PF Diego de Almagro Sur corresponde a 232 MWp/211.6 MW, conectándose a la subestación elevadora Inca de Oro para ser evacuada mediante una línea de transmisión de circuito simple de 220 kV y 2.6 km de longitud, que se conecta a la subestación Illapa existente en 220 kV.

Como se menciona previamente, el BESS DAS posee una potencia y capacidad de almacenamiento nominal de 8 MW y 32MWh, respectivamente. Estos valores corresponden a los valores máximos de potencia y energía admisibles del BESS tanto en su carga como en su descarga. El BESS se diseña para tener un ciclo de carga y descarga diario, el cual puede cargar y descargar su energía nominal de 32MWh a potencia nominal (8MW) en un tiempo mínimo de 4 horas. El tiempo de carga y descarga es configurable, permitiendo cargar y descargar los 32MWh en periodos superiores a 4hrs, disminuyendo la potencia. El operar con tiempos de descarga o carga inferiores a 4hrs significará descargas y cargas de energía inferiores a los valores máximos nominales de energía del BESS (32MWh).

También, el BESS DAS puede inyectar y/o absorber la potencia activa y reactiva indicada en la Figura 4.14.

Figura 4.1: Ubicación geográfica referencial PFV y BESS Diego de Almagro Sur. Fuente: Google Earth.

La ubicación del proyecto BESS y por consiguiente del PFV Diego de Almagro Sur, con respecto al sistema eléctrico nacional, es el siguiente:

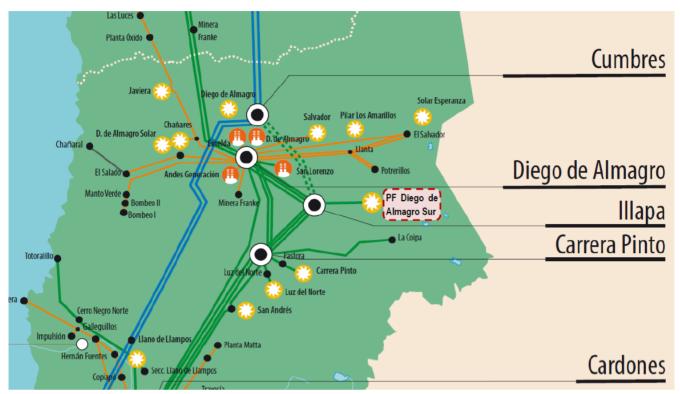


Figura 4.2: Mapa de ubicación del PFV y BESS Diego de Almagro Sur en el SEN.

4.1.2 Diagrama unilineal zona de interconexión del proyecto

En la Figura 4.3 se presenta el diagrama unilineal del entorno eléctrico en donde se conectará el proyecto, mientras que en la Figura 4.4 se presenta el diagrama unilineal después de la conexión del proyecto.

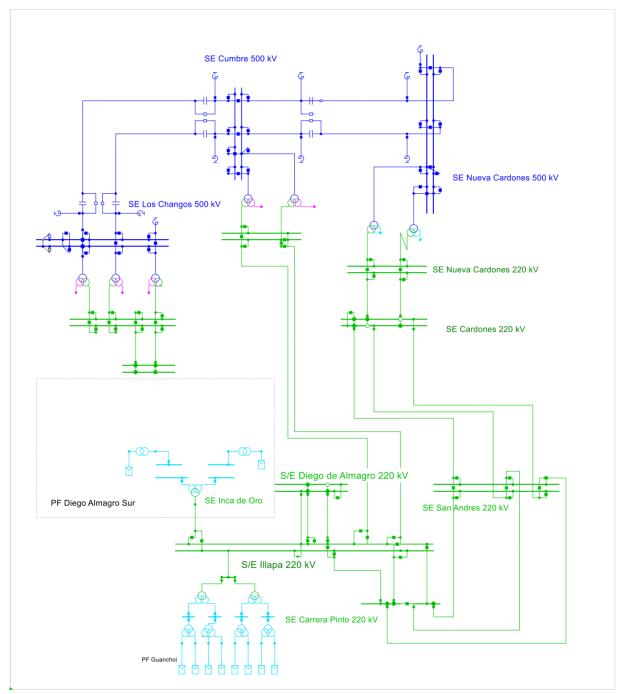


Figura 4.3: Diagrama unilineal zona de influencia sin proyecto.

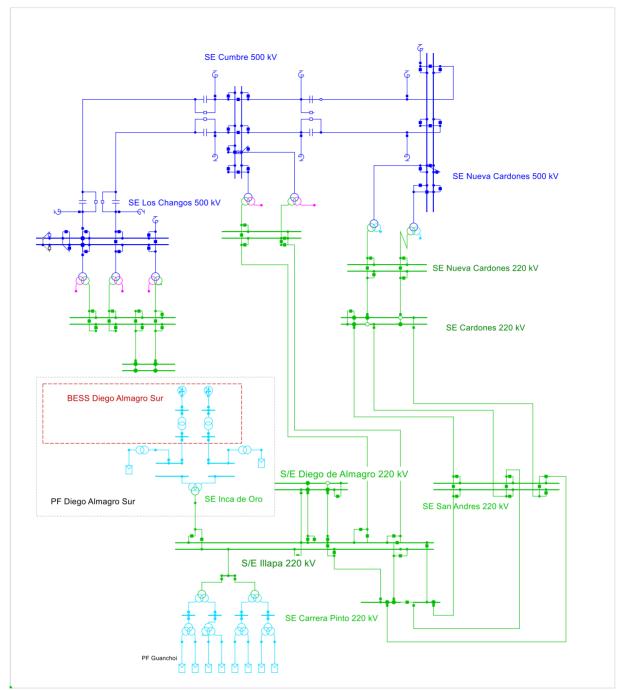


Figura 4.4: Diagrama unilineal zona de influencia con proyecto.

4.2 ANTECEDENTES TÉCNICOS DEL SISTEMA DE ALMACENAMIENTO DE BATERÍAS (BESS)

El proyecto sistema de almacenamiento de baterías (BESS) Diego de Almagro Sur, fue considerada en la topología de conexión 33kV del PFV Diego de Almagro Sur (con entrada en operación en julio 2022), quedando dos (2) celdas disponibles para la conexión del BESS. Según se detalla en el diagrama simplificado de la Figura 4.5, el punto de conexión del proyecto BESS tiene asociado las siguientes instalaciones y características:

- SE Inca de Oro 220/33/33kV 250MVA.
- PFV Diego de Almagro Sur 33kV 211.6MW.
- Proyecto BESS Diego de Almagro Sur 33kV 2x4MW.

PFV Diego de Almagro Sur posee 12 alimentadores que conectan los centros de transformación del parque con 2 barras de 33kV, correspondientes al devanado secundario y terciario del transformador de poder de la SE Inca de Oro. El proyecto BESS de 2X4MW se conecta en cada barra 33kV del switchgear de la SE Inca de Oro, tal como se muestra de forma esquemática en la Figura 4.6 y Figura 4.7.

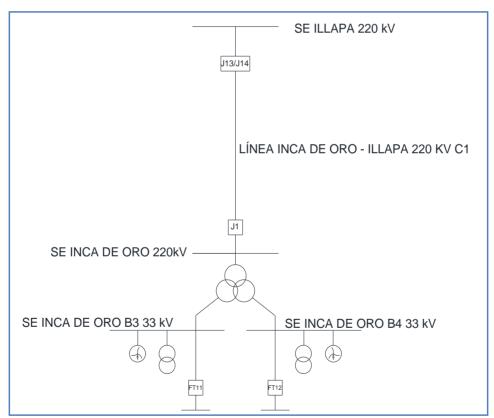


Figura 4.5: Diagrama unilineal MT e inversores – BESS y PFV Diego de Almagro Sur. Parte 1.

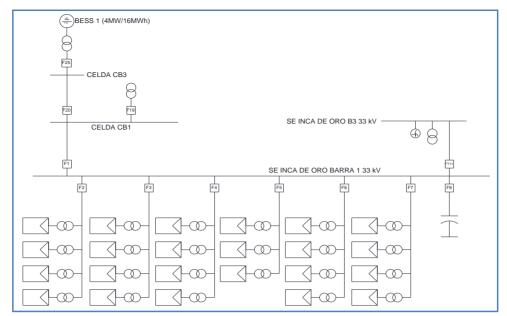


Figura 4.6: Diagrama unilineal MT e inversores – BESS y PFV Diego de Almagro Sur. Parte 2.

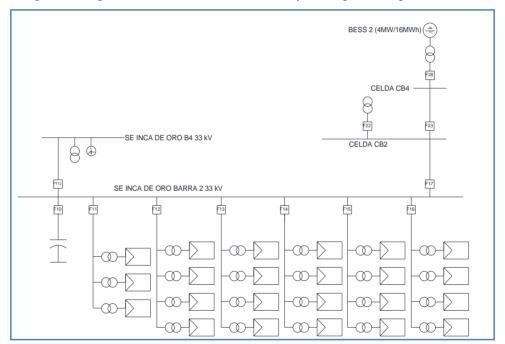


Figura 4.7: Diagrama unilineal MT e inversores – BESS y PFV Diego de Almagro Sur. Parte 3.

Los principales elementos pertenecientes a la red se desglosan a continuación:

- Línea aérea Inca de Oro Illapa 1x220 kV (2.6 km).
- Transformador elevador 220/33/33 kV 250 MVA, SE Inca de Oro.
- Transformador zigzag 33kV (reactor de neutro).
- Red colectora 33kV (sistema de cables de 240 mm², 400 mm² y 630 mm²).
- Transformador del tipo MVPS 4600-S2, correspondiente al bloque de los inversores PFV.
- Inversores SMA parque solar.
- Transformador de servicios auxiliares parque fotovoltaico.
- Banco de condensadores: 40 Mvar, distribuidos entre el Switchgear 1 (20 Mvar) y Switchgear 2 (20 Mvar).
- Conductores colectores de sistema BESS.
- Transformador elevador sistema BESS.
- Transformador de SSAA sistema BESS.
- Inversores Power Electronics sistema BESS.

4.2.1 Conductor de Media Tensión en 33kV

Para la conexión del proyecto BESS a la barra de 33kV de la SE Inca de Oro se utiliza un doble conductor de 630 mm2, cuyas características eléctricas entregadas por el fabricante se definen en el documento [5], y se presentan en la Figura 4.8. La longitud de cada conductor corresponde a la distancia aproximada a la que se encontrará cada módulo BESS a la barra en GIS de 33kV de la SE Inca de Oro, correspondientes a 160 m y 140 m para cada tramo.

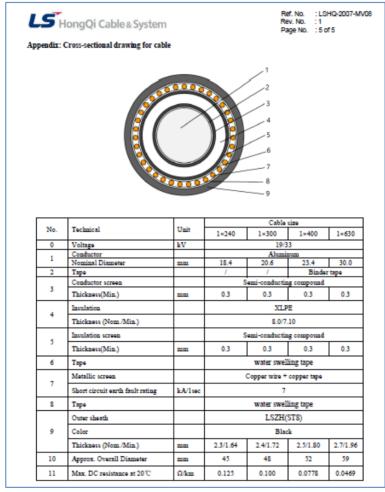


Figura 4.8: Parámetros de conductores para conexión de proyecto BESS.

4.2.2 Transformadores BESS 33/0.69kV 4.4 MVA

Para la conexión de cada sistema BESS se hará uso de transformadores de poder trifásicos Dy11 de 33/0.69kV de 4.4 MVA cada uno con cambiador de taps en vacío. Las características eléctricas expuestas en la ficha técnica entregada por el fabricante y ensayos de fábrica se muestran en la Figura 4.9 y Figura 4.10.

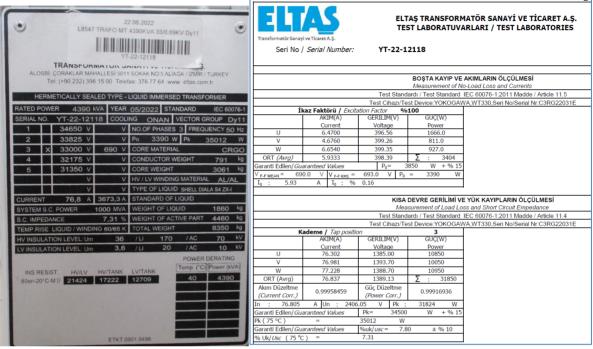


Figura 4.9: Información técnica de transformador elevador CB3 [6] [11].

Figura 4.10: Información técnica de transformador elevador CB4 [6] [11].

PÁGINA 20 DE 78

4.2.3 Transformador de servicios auxiliares 33/0.4kV

Por cada BESS se contará con un transformador de servicios auxiliares 33/0.4kV. En la Figura 4.11 y Figura 4.12 se presentan las características eléctricas señaladas en la placa de datos y ensayos respectivos de cada transformador.

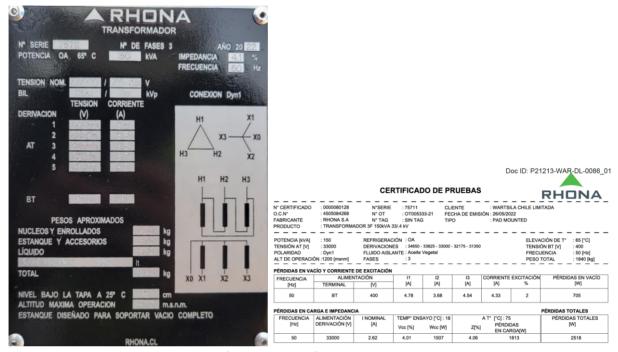


Figura 4.11: Captura de parámetros del Transformador de SSAA CB3, Fabricante RHONA.

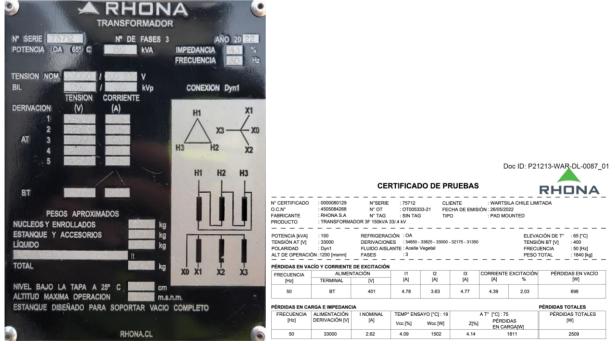


Figura 4.12: Captura de parámetros del Transformadores de SSAA CB4, Fabricante RHONA.

4.2.4 **Inversores**

Para la implementación de los BESS se utilizarán inversores de una potencia de 4.39MVA con temperatura de diseño a -35°C hasta 60°C, considerando una tensión de 1 pu y factor de potencia unitario. Los inversores del BESS son de marca Power Electronics, modelo FP4390k4H, los cuales poseen la siguiente ficha técnica:

INVERTER	Series	Freemaq PCSK GEN 3	
	Model	FP4390K4H	
	Operating Temperature	-35°C to 60°C / Active power derating >50°C	
OUTPUT	Rated AC Output Power ≤40°C and ≤2000masl	4390kVA ^[1]	
	Operating Grid Voltage (VAC)	690V ± 10% [2]	
	Grid Frequency	50Hz	
	THDi	<3% at any load condition	
INPUT	MPPT @full power (VDC) @35°C [3]	976-1500V	
	MPPT @full power (VDC) @50°C [3]	976-1310V	
EFFICIENCY	Max. Efficiency PCA, nom(η)	98,93%	
CABINET	Protection Degree	IP55 (Outdoor installation)	
	Colour	RAL7035	
	Dimensions [WxDxH] (m)	3.0 x 2.0 x2.2 ^[4]	
	Humidity Control	Yes, active heating	
PROTECTIONS	Overvoltage protection AC main	Type II	
	Overvoltage protection DC	Type II	
	AC Automatic circuit breaker	Included	
DC CONNECTION	Disconnection	DC Switch Disconnector Included	
	Ground fault detection	Isolation monitoring (Floating system)	
	Separate DC bus inputs	4	
COMMUNICATIONS		Modbus RTU (RS485)	
		Modbus TCP / IP (Ethernet)	
POWER CABLES INPUT		Bottom DC input (blind plates)	
POWER CABLES OUTPL	Л	Top side AC Output	
AUXILIARY SERVICES	User power supply options	5 kVA at 400 V (3-phase), 50 Hz	
	User cabinet	Integrated in the inverter.	
	Cooling	Forced air	
	HW communication	Ethernet (RJ45)	

Figura 4.13: Características de ficha técnica de los inversores para los BESS [7]

A continuación, se presenta la curva PQ entregada por el fabricante en el documento [8].

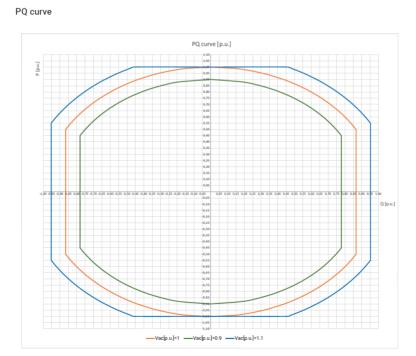


Figura 4.14: Curvas de capacidad de potencia activa y reactiva de los inversores FP4390K4H [8].

Con respecto al aporte al cortocircuito, se presenta la información entregada por el fabricante en el documento [9].

The following table shows the short circuit values and the duration:

Ip (kA)	Ik" (kA)	Peak Duration (ms)	Total Duration (ms)
16,200	5,728	<5	<30

Figura 4.15: Aportes de los inversores FP4390K4H al cortocircuito, de acuerdo con documentación de fabricante [9].

4.2.5 Baterías

El sistema de almacenamiento está compuesto por un arreglo de baterías Wärtsilä de 1490 kWh. La foto de placa de cada módulo de baterías se presenta en la Figura 4.16, mientras que en la Figura 4.17 se entrega la curva de degradación de capacidad de almacenamiento.

Figura 4.16: Foto de placa módulos de baterías BESS DAS.

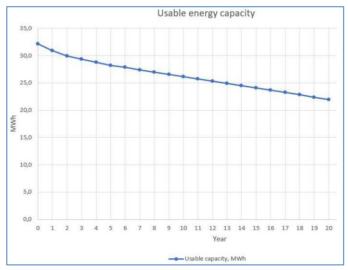


Figura 4.17: Curva de degradación de capacidad de almacenamiento BESS DAS. Fuente: Wartsila.

Cada conjunto de baterías por inversor consiste en 2 filas que contienen 6 cubos de baterías de 372.5 kW y 1490 kWh cada uno. La configuración de cubos de baterías por cada inversor se presenta en la Figura 4.18.

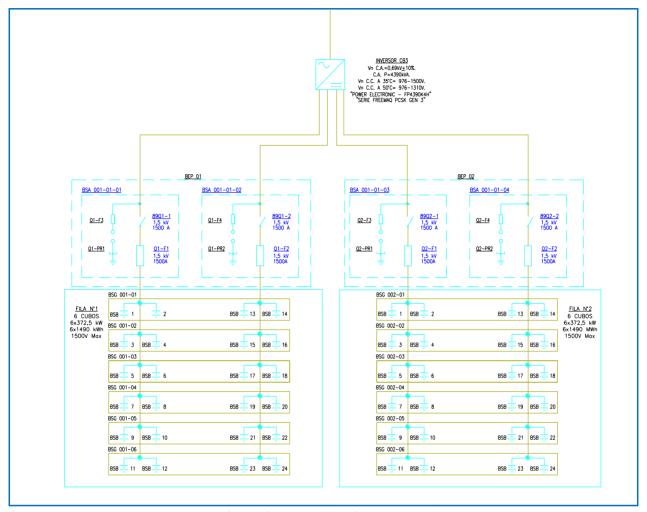


Figura 4.18: Configuración conjunto baterías por inversor de 4.39 MVA.

4.2.6 Línea Diego de Almagro Sur – Illapa 1x220kV

El BESS y PFV Diego de Almagro Sur evacuarán su potencia a través de una línea de transmisión de simple circuito de 220 kV y 2.6 km de largo (sin transposiciones). Además, esta línea tendrá un cable de guardia tipo OPGW para brindar protección a la línea contra descargas atmosféricas y proporcionar un canal de comunicación entre las subestaciones de ambos extremos.

Se utiliza la torre de suspensión S220.1M H=20.4 para el modelamiento de la línea 1x220 kV Inca de Oro - Illapa, la cual es la estructura más representativa de la línea. A continuación, se muestra la silueta de la estructura utilizada:

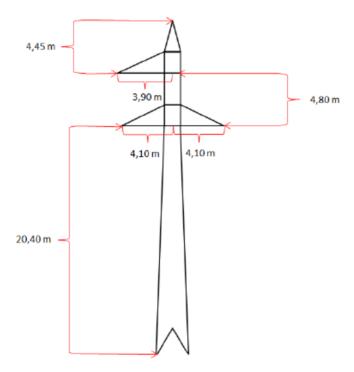


Figura 4.19: Silueta de torre de suspensión S220.1M h=20.4

El tipo de conductor de la línea corresponde a FLINT 375.4 mm², cuyas principales características se indican a continuación:

Características	Valor
Tipo	Aleación de aluminio (AAAC)
Nombre de código	Flint
Sección transversal	375.4 [mm²]
Diámetro nominal del conductor	25.16 [mm]
Tensión de rotura	11.041 [kg]
Peso del conductor	1.0299 [kg]
Radio medio geométrico	9.797 [mm]
Resistencia DC a 20°C	0.08944 [Ω /km]

Tabla 4.1: Características de conductor de fase.

Del mismo modo, en la Tabla 4.2 se muestran las principales características del conductor utilizado para el cable de guardia son:

Características	Valor
Tipo	OPGW 24 Fibras
Sección transversal	121.86 [mm²]
Diámetro nominal del conductor	14.6 [mm]
Radio medio geométrico	5.69 [mm]
Resistencia DC a 20°C	0.327 [Ω /km]
Resistencia DC a 30°C	0.338 [Ω /km]
Tipo	OPGW 24 Fibras

Tabla 4.2: Características de cable de guardia. Red de media tensión en 33kV

5 DETERMINACIÓN DE MÍNIMO TÉCNICO BESS DIEGO DE ALMAGRO SUR

5.1 EXIGENCIAS NORMATIVAS Y DESCRIPCIÓN DE ENSAYOS

5.1.1 Requerimientos normativos

Las instalaciones que desean conectarse al sistema eléctrico nacional (SEN) deben cumplir con los requerimientos de la NTSyCS, y con los anexos técnicos que la complementan. De esta forma, el propietario de la instalación deberá entregar la información técnica requerida y respaldar los parámetros de operación.

Durante el periodo de puesta en servicio de instalaciones de generación en el SEN, se deben validar los siguientes parámetros de acuerdo con lo establecido en los respectivos Anexos Técnicos:

- Pruebas de Potencia Máxima en Unidades Generadoras.
- Determinación de Mínimos Técnicos en Unidades Generadoras.
- Determinación de Parámetros para los procesos de Partida y Detención de Unidades Generadoras.

Las Empresas Generadoras cuyas unidades generadoras hayan entrado en operación en el SEN y aquellas que estén realizando pruebas de operatividad previas a su entrada en operación, deberán informar al Coordinador, el Mínimo Técnico de sus unidades, conforme a los plazos y formas de acuerdo con lo requerido en el anexo técnico: "Determinación de mínimos técnicos en unidades generadoras".

El anexo técnico mencionado anteriormente, en su artículo 8 "Consideraciones en la determinación del Mínimo Técnico" se indica que:

"El valor informado para el Mínimo Técnico de las unidades generadoras del SI deberá obedecer sólo a restricciones técnicas de operación de la misma."

"La Empresa Generadora deberá proporcionar al Coordinador los antecedentes que respaldan el valor de Mínimo Técnico informado, incluyendo los supuestos y metodologías utilizadas para establecer dicho valor, los que deberán recoger las recomendaciones entregadas por el fabricante y antecedentes operativos que hayan sido registrados durante la operación de la respectiva unidad generadora."

"El valor informado para el Mínimo Técnico de las unidades generadores señalado en el presente Anexo, deberá ser representativo de las características técnicas propias de dichas unidades. Aquellas restricciones operativas tales como restricciones del sistema de transmisión, medioambientales, convenios de riego, entre otras, no deberán ser consideradas en la determinación de este valor".

Por ende, el presente informe técnico contiene la información solicitada en el anexo técnico "Determinación de mínimos técnicos en unidades generadoras".

5.1.2 Pruebas requeridas

Los anexos técnicos mencionados, así como las guías técnicas elaboradas por el CEN, especifican de forma detallada los procedimientos y obtención de resultados que validan la información respecto de las unidades de generación convencional y de energía renovable. No obstante, estos documentos no contienen procedimientos específicos paras las pruebas que se deben desarrollar a los equipos de almacenamiento de energía activa o ESS (Energy Storage Systems).

La presente sección expone los procedimientos de pruebas específicas para BESS, los cuales fueron aprobados por el CEN [18], que permiten verificar el correcto cumplimiento de los requerimientos técnicos y normativos ya citados. El procedimiento para las pruebas de determinación de Mínimo Técnico en BESS se basa en los documentos [1], [13], [15] y [16].

Según se indica en el documento [15], se entrega la siguiente definición:

Mínimo Técnico: Se entenderá por Mínimo Técnico la potencia activa bruta mínima, con la cual una unidad puede operar en forma permanente, segura y estable inyectando energía al SI en forma continua.

En base a la normativa vigente se proponen los siguientes indicadores para ser medidos:

- **Mínimo Técnico en modo descarga** P_{MT-D} : Corresponde a la potencia activa bruta mínima, con la cual el sistema de almacenamiento eléctrico puede operar en forma permanente, segura y estable, inyectando energía al SEN en forma continua.
- **Mínimo Técnico en modo carga** P_{MT-D} : Corresponde a la potencia activa bruta mínima, con la cual el sistema de almacenamiento eléctrico puede operar en forma permanente, segura y estable absorbiendo energía en forma continua.
- Mínimo Técnico de ciclo de trabajo en modo descarga P_{MT_CT-D}: Corresponde a la potencia activa bruta mínima, con la cual el sistema de almacenamiento eléctrico puede operar en forma permanente, segura y estable, inyectando energía al SEN en forma continua. Esta potencia de descarga deberá permitir descargar la Capacidad Nominal del BESS (MWh) en un tiempo menor a su periodo de ciclo de trabajo definido.
- **Mínimo Técnico de ciclo de trabajo en modo carga** P_{MT_CT-C} : Corresponde a la potencia activa bruta mínima, con la cual el sistema de almacenamiento eléctrico puede operar en forma permanente, segura y estable, absorbiendo energía en forma continua. Esta potencia de carga deberá permitir cargar la Capacidad Nominal del BESS (MWh) en un tiempo menor a su periodo de ciclo de trabajo definido.

Nota: Para el caso de mínimo técnico de ciclo de trabajo en modo descarga y modo carga, se debe considerar que el periodo de ciclo de trabajo típico para aplicaciones de arbitraje de energía es de 24 horas. En el caso del BESS DAS, el equipamiento tiene un diseño que permite como máximo 1 ciclo diario.

Cabe señalar que, el BESS DAS es capaz de recorrer toda la curva PQ mostrada en la Figura 4.14, por lo que los valores de mínimo técnico planteados en el presente informe no resultan ser una restricción técnica de operación, no obstante, se definen y ensayan para dar cumplimiento a la normativa vigente.

Para dar cumplimiento a la prueba de Mínimo Técnico se proponen los siguientes ensayos:

- i. Prueba 1: Inyectar potencia activa mínima en modo descarga. Recta color azul en Figura 5.1.
- ii. Prueba 2: Absorber potencia activa mínima en modo carga. Recta color verde en Figura 5.1.
- iii. Prueba 3: Inyectar potencia activa mínima de ciclo de trabajo en modo descarga. Recta segmentada de color azul en Figura 5.1.
- iv. Prueba 4: Absorber potencia activa mínima de ciclo de trabajo en modo carga. Recta segmentada de color **verde** en Figura 5.1.

Figura 5.1: Curva PQ teórica BESS y mínimo técnico en modo descarga y modo carga.

En cada una de las pruebas se realizan movimientos de potencia reactiva para comprobar que el BESS opera de forma estable.

5.1.3 Parámetros para reportar

En la Figura 5.2 se muestra el esquema de una central de generación que posee un sistema BESS acoplado a una planta de generación de energía renovable variable (ERV). Además, se presenta de forma esquemática la disposición de los servicios auxiliares del BESS Diego de Almagro Sur.

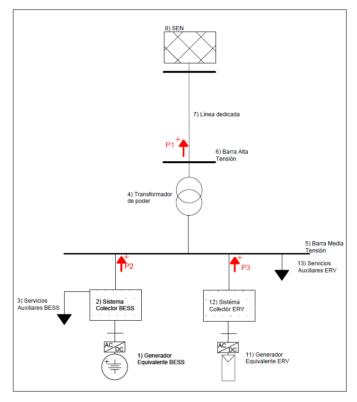


Figura 5.2: Esquema de planta de generación BESS acoplada con generación solar, configuración específica de central Diego de Almagro Sur.

Los componentes principales de la planta son:

- 1. Generador equivalente BESS: Corresponde a la suma de los aportes distribuidos de potencia activa, en el lado AC de cada inversor perteneciente al BESS.
- 2. Sistema colector equivalente BESS: Corresponde a las pérdidas del sistema colector del sistema BESS, esto es, transformadores colectores, cables de baja y media tensión.
- 3. Servicios auxiliares BESS: Cargas asociadas con la operación de un BESS tales como, pero no limitado a, controles, sistemas de enfriamiento, ventiladores, bombas y calentadores necesarios para operar y proteger el sistema.
- 4. Transformador de poder: Equipo elevador de tensión de la central generadora o del BESS que permite la conexión al SEN.
- 5. Barra media tensión: Corresponde a la tensión en el lado de media tensión del transformador de poder de la central.
- 6. Barra de alta tensión: Corresponde a la tensión en el lado de alta tensión del transformador de poder de la central.
- 7. Línea dedicada de la central: Línea de alta tensión que vincula la central generadora con el SEN.

- 8. Sistema Eléctrico Nacional.
- 9. P1: Potencia inyectada o absorbida por el BESS o conjunto central generadora y BESS en la barra de alta tensión de su subestación de salida. La potencia activa de salida se expresará con un signo positivo como se muestra en la Figura 5.2.
- 10. P2: Potencia inyectada o absorbida por el BESS en la barra de media tensión de su subestación de salida. La potencia activa de salida se expresará con un signo positivo como se muestra en la Figura 5.2.
- 11. Generador equivalente ERV: En el caso de que la central generadora contenga generación ERV, ya sea fotovoltaica o eólica, corresponde a la suma de los aportes distribuidos de potencia activa alterna de cada inversor perteneciente a generación de ERV.
- 12. Sistema colector ERV: Corresponde a las pérdidas del sistema colector del sistema ERV, esto es, transformadores colectores, cables de baja y media tensión.
- 13. Servicios auxiliares ERV: Consumo de potencia asociada al sistema de generación ERV.
- 14. P3: Potencia inyectada o absorbida por la central generadora ERV en la barra de media tensión de su subestación de salida. La potencia activa de salida se expresará con un signo positivo como se muestra en la Figura 5.2.
- 15. Punto de conexión: Se define el punto de conexión para un BESS o conjunto central generadora y BESS, el correspondiente a la barra de alta tensión de sus transformadores de poder.

Para el caso de la configuración mostrada en la Figura 5.2, durante los ensayos realizados los inversores del PFV Diego de Almagro Sur no inyectaban potencia activa a la red de 33kV, de esta forma, la potencia P3 agrupa las pérdidas de la red en 33kV del PFV (conductores y transformadores colectores), además de los consumos auxiliares inversores. Para esta configuración se cumple lo señalado a continuación:

$$P3 = P_{SC_{PFV}} + P_{SSAA_{INV}}$$

$$P3 + P_{SSAA_{PFV}} + P_T = P1 - P2$$

Por lo tanto, la potencia activa bruta ($P_{MT\ bruta}$) del sistema BESS se expresa de la siguiente manera:

$$P_{MT\;bruta} = P1 + P_T + P_{SC_{PFV}} + P_{SSAA_{INV}} + P_{SSAA_{PFV}} + P_{SSAA_{BESS}} + P_{SC_{BESS}}$$

O en su defecto:

$$P_{MT} = P2 + P_{SSAA\ BESS} + P_{SC\ BESS}$$

En donde:

P1: Potencia activa inyectada en la barra de alta tensión de la central.

P2: Potencia activa inyectada en la barra de media tensión de la central.

 P_T : Pérdidas activas del transformador de poder de la central.

 $P_{SSAA\ BESS}$: Potencia consumida por los servicios auxiliares del sistema BESS.

 $P_{SSAAppy}$: Potencia consumida por los servicios auxiliares del sistema PFV.

 $P_{SSAAINV}$: Potencia consumida por los servicios auxiliares inversores PFV.

 $P_{SC_{BESS}}$: Pérdidas activas sistema colector asociadas al BESS.

 $P_{SC_{REV}}$: Pérdidas activas sistema colector asociadas al PFV.

5.2 PRUEBA DE MÍNIMO TÉCNICO EN MODO DESCARGA (PRUEBA 1)

Los registros de la prueba de mínimo técnico en modo (Descarga) del BESS Diego de Almagro Sur corresponden a las mediciones de generación comprendidas entre 00:30 y las 00:37 del día 22 de agosto de 2023. Durante las pruebas el sistema colector del PFV se encontraba conectado a la SE Inca de Oro, por lo tanto, las mediciones recabadas incluyen pérdidas asociadas al sistema colector y SS.AA. del PFV Diego de Almagro Sur. La Figura 5.3 y Figura 5.4 presentan los registros de potencia activa y reactiva en el paño J1 de la SE Inca de Oro. Adicionalmente, se registró la potencia activa en los paños de cada BESS, siendo estos F1 y F17. La Figura 5.5 y Figura 5.6 representan las inyecciones de cada banco de baterías.

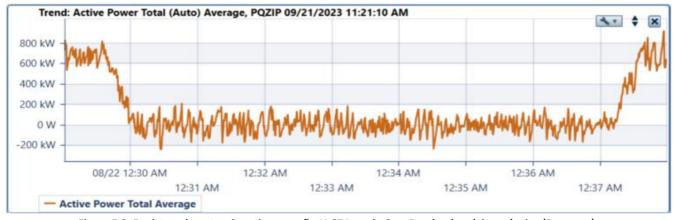


Figura 5.3: Registros de potencia activa en paño J1 SE Inca de Oro. Prueba de mínimo técnico (Descarga).

Figura 5.4: Registros de potencia reactiva en paño J1 SE Inca de Oro. Prueba de mínimo técnico (Descarga).

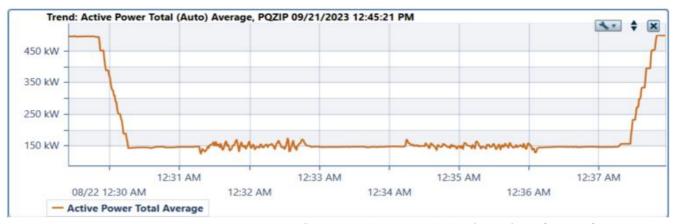


Figura 5.5: Registros de potencia activa en paño F1 SE Inca de Oro. Prueba de mínimo técnico (Descarga).

Figura 5.6: Registros de potencia activa en paño F17 SE Inca de Oro. Prueba de mínimo técnico (Descarga).

Por otra parte, se registró el consumo de potencia activa en las barras de baja tensión (BT) de los transformadores de SS.AA. del BESS 1 y 2, es decir, aguas abajo las barras CB3 y CB4 respectivamente. La Figura 5.7 y Figura 5.8 presentan las mediciones registradas.

Figura 5.7: Registros de potencia activa SS.AA. BESS 1. Prueba de mínimo técnico (Descarga).

Figura 5.8: Registros de potencia activa SS.AA. BESS 2. Prueba de mínimo técnico (Descarga).

En adelante se definen las potencias presentadas en la Figura 5.2 como:

- P1: Potencia activa registrada en el paño J1 de la SE Inca de Oro.
- P2: Potencia activa registrada en los paños F1 y F17 de la SE Inca de Oro.
- $P_{SSAA, BESS, 1}$: Potencia activa registrada en BT del transformador de SS.AA. BESS 1.
- $P_{SSAA\ BESS\ 2}$: Potencia activa registrada en BT del transformador de SS.AA. BESS 2.

La Tabla 5.1 detalla el promedio de las variables registradas para el periodo comprendido entre las 00:30 y las 00:37 del día 22 de agosto de 2023, correspondiente a la prueba de mínimo técnico en modo descarga del BESS Diego de Almagro Sur.

Paño	J1	F1	F17	SS.AA. BESS 1	SS.AA. BESS 2
Potencia activa [kW]	0.00	147.5211	148.2516	7.6445	4.9615

Tabla 5.1: Promedio variables registradas durante la prueba de mínimo técnico (Descarga).

Es importante señalar que, para cada punto de medición se cuenta con las variables de frecuencia, tensión, corriente, potencia activa y potencia reactiva. Variables que se utilizarán en la siguiente sección.

5.2.1 Determinación de Potencia Mínima Neta en Modo Descarga

La potencia mínima neta para el proceso de descarga del BESS Diego de Almagro Sur, corresponde a la potencia activa promedio registrada en el paño J1 de la SE Inca de Oro durante la prueba mínimo técnico en modo descarga.

$$P_{Min neta} = 0.00 [kW]$$

5.2.2 Determinación de Potencia Mínima Bruta en Modo Descarga

La potencia bruta de mínimo técnico (MT) en modo Descarga del BESS Diego de Almagro Sur se calcula en base a la potencia registrada en los paños F1 y F17 de la SE Inca de Oro (P2). Para determinar el MT es necesario añadir a P2 las potencias asociadas a servicios auxiliares del BESS Diego de Almagro sur, y las pérdidas del sistema colector del banco de baterías, es decir:

$$P_{MT} = P2 + P_{SSAA_BESS} + P_{SC_BESS}$$

Inicialmente, se identifican las pérdidas del transformador, el consumo de SS.AA. del PFV y las pérdidas del sistema colector 33kV del PFV, las que se determinan como la diferencia entre la potencia activa neta (P1) y los registros de potencia activa de los paños F1 y F17 de la SE Inca de Oro, es decir:

$$P_T + P_{SSAA_{PFV}} + P_{SC_{PFV}} + P_{SSAA_{INV}} = P2 - P1$$

$$P_T + P_{SSAA_{PFV}} + P_{SC_{PFV}} + P_{SSAA_{INV}} = 295.7727 [kW]$$

A continuación, para obtener la potencia mínima bruta se requiere identificar las pérdidas del sistema colector del BESS, para ello se procede separando en BESS 1 (CB3) y BESS 2 (CB4):

$$P_{Min\ bruta} = P2 + P_{SSAA_BESS_1} + P_{SC_BESS_1} + P_{SSAA_BESS_2} + P_{SC_BESS_2}$$

Las pérdidas asociadas al sistema colector de cada centro de almacenamiento (BESS 1 y 2) se pueden clasificar como: pérdidas del transformador de SS.AA., pérdidas del transformador colector 0.69/33kV y las pérdidas del cobre del alimentador:

$$P_{SC_{BESS_x}} = P_{T_{SS.AA_x}} + P_{T_{colector_x}} + P_{Cu_x}$$

Las pérdidas del transformador de SS.AA. se determinan como la suma de las pérdidas de vacío y un ponderado de las pérdidas de carga en función del cuadrado de la corriente de operación:

$$P_{T_{SS.AA_x}} = P_{vacio_x} + \frac{I_x^2}{I_n^2} P_{carga_x}$$

Donde:

 P_{vacion} : Pérdidas de vacio del transformador de SS.AA. "x".

 P_{caraa} x: Pérdidas de carga del transformador de SS.AA. "x".

 I_x : Corriente registrada en BT del transformador de SS. AA. "x".

 I_n : Corriente nominal de BT del transformadorde SS. AA. "x", 216.5A.

Las pérdidas de vacío y carga de los transformadores de SS.AA. conectados al CB3 y CB4 se encuentran en la Figura 4.11 y Figura 4.12. A partir de dicha información se calculan las pérdidas de los transformadores de SS.AA., los resultados se muestran en la tabla siguiente:

Transformador	P _{vacío} [MW]	P_{carga} [MW]	I_{χ} [A]	$P_{T_{SS.AA}}$ [kW]
SS.AA. 1 (BESS1)	0.000705	0.001813	21.695	0.723
SS.AA. 2 (BESS 2)	0.000698	0.001811	12.681	0.704

Tabla 5.2: Cálculo de pérdidas de los transformadores de SS.AA.

Las pérdidas del cobre en el conductor de 33kV están asociadas únicamente al calentamiento, por lo tanto, están representadas por la siguiente expresión:

$$P_{Cu x} = 3 * L_x * \rho_x * I_x^2$$

donde:

 L_r : Largo del conductor "x" en km.

 ρ_x : Resistividad del conductor "x" en ohms/km.

 I_x : Corriente promedio registrada.

Los parámetros técnicos del conductor de los alimentadores F1 y F17 se presentan en la Figura 4.8. La Tabla 5.3 presenta el cálculo de las pérdidas del cobre en los conductores de los alimentadores mencionados.

Alimentador	<i>L</i> [km]	ho[ohm/km]	I_{χ} [A]	P_{Cu} [kW]
F1	0.14	0.02345	5.955	0.000349
F17	0.16	0.02345	5.989	0.000404

Tabla 5.3: Cálculo de pérdidas del cobre en los alimentadores F1 y F17.

Para obtener las pérdidas totales del sistema colector del BESS, es necesario determinar las pérdidas de los transformadores colectores 0.69/33kV de BESS, para ello se procede de manera similar a las pérdidas de los transformadores de SS.AA., donde la corriente de media tensión (MT) del transformador es calculada como la suma de la corriente de media tensión del transformador de SS.AA. y la corriente de cabecera del alimentador.

$$P_{T_{colector_x}} = P_{vacio_x} + \frac{I_x^2}{I_n^2} P_{carga_x}$$

Las pérdidas de vacío y carga de los transformadores colectores 0.69/33kV se encuentran en la Figura 4.9 y Figura 4.10. Los resultados se muestran en la Tabla 5.4.

Transformador	P_{vacio} [MW]	P_{carga} [MW]	$I_{x}[A]$	$P_{T_{colector}}$ [kW]
CB3 (T. BESS 1)	0.003390	0.035012	6.2180	3.6195
CB4 (T. BESS 2)	0.003353	0.035075	6.1427	3.5773

Tabla 5.4: Cálculo de pérdidas de los transformadores colectores 0.69/33kV.

La Tabla 5.5 agrupa las pérdidas del sistema colector, las que ascienden a un total de 8.625kW.

Equipamiento	$P_{T_{SS.AA.}}[kW]$	P_{Cu} [kW]	$P_{T_{colectox}}$ [kW]	$P_{SC_{BESS}}[kW]$
BESS 1	0.723	0.000349	3.6195	4.343
BESS 2	0.704	0.000404	3.5773	4.282
_			Total	8.625

Tabla 5.5: Resumen pérdidas sistema colector BESS.

Finalmente, se determina el mínimo técnico bruto modo descarga:

$$P_{Min\ bruto} = P2 + P_{SSAA_BESS_1} + P_{SC_BESS_1} + P_{SSAA_BESS}$$

P_{F1} [kW]	P_{F17} [kW]	P2 [kW]	$P_{SS.AA._BESS_1}[kW]$	$P_{SS.AA._BESS_2}[kW]$	$P_{SC_{BESS}}[kW]$	$P_{Min\ bruto}[kW]$
147.5211	148.2516	295.7727	7.6445	4.9615	8.625	317.0033

La potencia mínima bruta del BESS Diego de Almagro sur en el proceso de descarga es de 317.0033 kW.

5.3 PRUEBA DE MÍNIMO TÉCNICO EN MODO CARGA (PRUEBA 2)

Los registros de la prueba de mínimo técnico en modo carga del BESS Diego de Almagro Sur corresponden a las mediciones de generación comprendidas entre 20:28 y las 20:38 del día 22 de agosto de 2023. Durante las pruebas el sistema colector del PFV se encontraba conectado a la SE Inca de Oro. La Figura 5.9 y Figura 5.10 presentan los registros de potencia activa y reactiva en el paño J1 de la SE Inca de Oro. Adicionalmente, se registró la potencia activa en los paños de cada BESS, siendo estos F1 y F17. La Figura 5.11 y Figura 5.12 representan las inyecciones de cada banco de baterías.

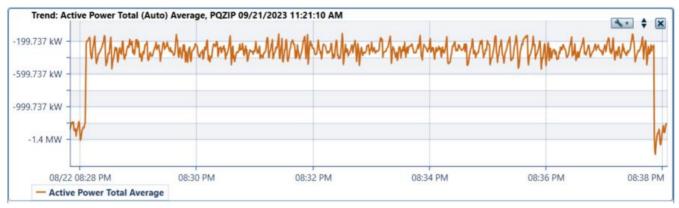


Figura 5.9: Registros de potencia activa en paño J1 SE Inca de Oro. Prueba de mínimo técnico (Descarga).

Figura 5.10: Registros de potencia reactiva en paño J1 SE Inca de Oro. Prueba de mínimo técnico (Descarga).

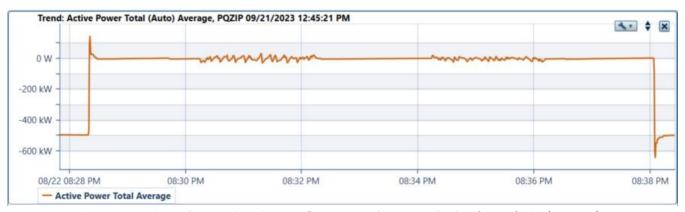


Figura 5.11: Registros de potencia activa en paño F1 SE Inca de Oro. Prueba de mínimo técnico (Descarga).

Figura 5.12: Registros de potencia activa en paño F17 SE Inca de Oro. Prueba de mínimo técnico (Descarga).

Por otra parte, se registró el consumo de potencia activa en las barras de baja tensión (BT) de los transformadores de SS.AA. del BESS 1 y 2, es decir, aguas abajo las barras CB3 y CB4 respectivamente. La Figura 5.7 y Figura 5.8 presentan las mediciones registradas.

Figura 5.13: Registros de potencia activa SS.AA. BESS 1. Prueba de mínimo técnico (Descarga).

Figura 5.14: Registros de potencia activa SS.AA. BESS 2. Prueba de mínimo técnico (Descarga).

La Tabla 5.6 detalla el promedio de las variables registradas para el periodo comprendido entre las 20:28 y las 20:38 del día 22 de agosto de 2023, correspondiente a la prueba de mínimo técnico en modo carga del BESS Diego de Almagro Sur.

Paño	J1	F1	F17	SS.AA. BESS 1	SS.AA. BESS 2
Potencia activa [kW]	-304.401	0.202	0.745	13.2619	10.2595

Tabla 5.6: Promedio variables registradas durante la prueba de mínimo técnico (Carga).

Página 39 de 78

5.3.1 Determinación de Potencia Mínima Neta en Modo Carga

La potencia mínima neta para el proceso de carga del BESS Diego de Almagro Sur, corresponde a la potencia activa promedio registrada en el paño J1 de la SE Inca de Oro durante la prueba mínimo técnico en modo carga.

$$P_{Min \, neta} = -304.401 \, [kW]$$

5.3.2 Determinación de Potencia Mínima Bruta en Modo Carga

Para determinar la potencia bruta de mínimo técnico es necesario añadir a P2 las potencias asociadas a servicios auxiliares del BESS Diego de Almagro sur y pérdidas del sistema colector del banco de baterías, es decir:

$$P_{MT} = P2 + P_{SSAA\ BESS} + P_{SC\ BESS}$$

Como primer paso, se identifican las pérdidas del transformador, el consumo de SS.AA. del PFV y las pérdidas del sistema colector 33kV del PFV, las que se determinan como la diferencia entre la potencia activa neta (P1) y los registros de potencia activa de los paños F1 y F17 de la SE Inca de Oro, es decir:

$$P_T + P_{SSAA_{PFV}} + P_{SC_{PFV}} + P_{SSAA_{INV}} = 305.348[kW]$$

Las pérdidas asociadas al sistema colector de cada centro de almacenamiento se dividen en: pérdidas del transformador de SS.AA., pérdidas del transformador colector 0.69/33kV y las pérdidas del cobre del alimentador.

$$P_{Min\ bruta} = P2 + P_{SSAA_BESS_1} + P_{SC_BESS_1} + P_{SSAA_BESS_2} + P_{SC_BESS_2}$$

Las pérdidas asociadas al sistema colector de cada centro de almacenamiento (BESS 1 y 2) se clasifican como: pérdidas del transformador de SS.AA., pérdidas del transformador colector 0.69/33kV y las pérdidas del cobre del alimentador.

$$P_{SC_{BESS_x}} = P_{T_{SS.AA_x}} + P_{T_{colector_x}} + P_{Cu_x}$$

Las pérdidas del transformador de SS.AA. se determinan como la suma de las pérdidas de vacío y un ponderado de las pérdidas de carga en función del cuadrado de la corriente de operación, es decir:

$$P_{T_{SS.AA_x}} = P_{vacio_x} + \frac{I_x^2}{I_n^2} P_{carga_x}$$

Transformador	P_{vacio} [MW]	P_{carga} [MW]	I_{x} [A]	$P_{T_{SS.AA}}$ [kW]
SS.AA. 1 (BESS1)	0.000705	0.001813	42.369	0.774
SS.AA. 2 (BESS 2)	0.000698	0.001811	29.528	0.732

Tabla 5.7: Cálculo de pérdidas de los transformadores de SS.AA.

Las pérdidas del cobre en el conductor de 33kV están asociadas únicamente al calentamiento, por lo tanto, están representadas por la siguiente expresión:

$$P_{Cu_{-}x} = 3 * L_x * \rho_x * I_x^2$$

Alimentador	<i>L</i> [km]	ho[ohm/km]	I_{x} [A]	P_{Cu} [kW]
F1	0.14	0.02345	4.140	0.000169
F17	0.16	0.02345	4.127	0.000192

Tabla 5.8: Cálculo de pérdidas del cobre en los alimentadores F1 y F17.

Luego, se determinan las pérdidas de los transformadores colectores 0.69/33kV de BESS.

$$P_{T_{colector_x}} = P_{vacio_x} + \frac{I_x^2}{I_n^2} P_{carga_x}$$

Transformador	P _{vacío} [MW]	P_{carga} [MW]	I_{χ} [A]	$P_{T_{colector}}$ [kW]
CB3 (T. BESS 1)	0.003390	0.035012	4.653	3.5185
CB4 (T. BESS 2)	0.003353	0.035075	4.485	3.4726

Tabla 5.9: Cálculo de pérdidas de los transformadores colectores 0.69/33kV.

La Tabla 5.10 agrupa las pérdidas del sistema colector, las que ascienden a un total de 8.498 kW.

Equipamiento	$P_{T_{SS.AA.}}[kW]$	P_{Cu} [kW]	$P_{T_{colectox}}$ [kW]	$P_{SC_{BESS}}[kW]$
BESS 1	0.774	0.000169	3.5185	4.293
BESS 2	0.732	0.000192	3.4726	4.204
			Total	8.498

Tabla 5.10: Resumen pérdidas sistema colector BESS.

Finalmente, se determina el mínimo técnico para modo carga:

$$P_{Min\ bruta} = P2 + P_{SSAA_BESS_1} + P_{SC_BESS_1} + P_{SSAA_BESS}$$

P_{F1} [kW]	P_{F17} [kW]	P2 [kW]	$P_{SS.AA._BESS_1}[kW]$	$P_{SS.AA._BESS_2}[kW]$	$P_{SC_{BESS}}[kW]$	$P_{Min\ bruta}[kW]$
0.202	0.745	0.947	13.2619	10.2595	8.498	32.966

La potencia mínima bruta del BESS Diego de Almagro sur en el proceso de carga es de 32.966 kW.

5.4 PRUEBA DE MÍNIMO TÉCNICO CICLO DE TRABAJO EN MODO DESCARGA (PRUEBA 3)

Los registros de la prueba de mínimo técnico para ciclo de trabajo en modo descarga del BESS Diego de Almagro Sur corresponden a las mediciones de generación comprendidas entre 20:00 del día 19 de agosto y las 08:00 del día 20 de agosto de 2023. Durante las pruebas el sistema colector del PFV se encontraba conectado a la SE Inca de Oro, motivo por el cual finalizando la prueba (hora solar) se observa el aporte de generación proveniente del PFV. La Figura 5.15 y Figura 5.16 presentan los registros de potencia activa y reactiva en el paño J1 de la SE Inca de Oro. Adicionalmente, se registró la potencia activa en los paños de cada BESS, siendo estos F1 y F17. La Figura 5.17 y Figura 5.18 representan las inyecciones de cada banco de baterías.

Figura 5.15: Registros de potencia activa en paño J1 SE Inca de Oro. Prueba de mínimo técnico (Descarga).

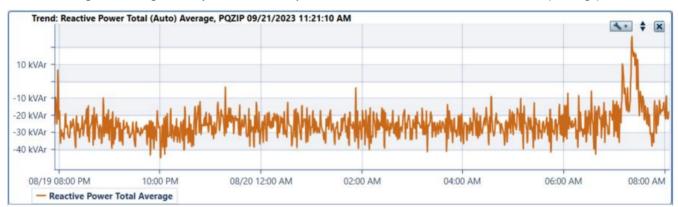


Figura 5.16: Registros de potencia reactiva en paño J1 SE Inca de Oro. Prueba de mínimo técnico (Descarga).

Figura 5.17: Registros de potencia activa en paño F1 SE Inca de Oro. Prueba de mínimo técnico (Descarga).

PÁGINA 42 DE 78

Figura 5.18: Registros de potencia activa en paño F17 SE Inca de Oro. Prueba de mínimo técnico (Descarga).

Por otra parte, se registró el consumo de potencia activa en las barras de baja tensión (BT) de los transformadores de SS.AA. del BESS 1 y 2, es decir, aguas abajo las barras CB3 y CB4 respectivamente. La Figura 5.19 y Figura 5.20 presentan las mediciones registradas.

Figura 5.19: Registros de potencia activa SS.AA. BESS 1. Prueba de mínimo técnico (Descarga).

Figura 5.20: Registros de potencia activa SS.AA. BESS 2. Prueba de mínimo técnico (Descarga).

Con el objetivo de no incluir la influencia de los paneles solares en la prueba de mínimo técnico ciclo de trabajo en modo de descarga, se utiliza la media de las variables registradas entre las 20:30 del día 19 de agosto y las 06:30 del día 20 de agosto. La Tabla 5.11 detalla el promedio de las variables registradas.

Paño	J1	F1	F17	SS.AA. BESS 1	SS.AA. BESS 2
Potencia activa [MW]	1.8793	1.309	1.314	0.008059	0.007217

Tabla 5.11: Promedio variables registradas durante la prueba de mínimo técnico para ciclo trabajo (Descarga).

PÁGINA 43 DE 78

5.4.1 Determinación de Potencia Mínima Ciclo de Trabajo Neta en Modo Descarga

La potencia mínima ciclo de trabajo neta para el proceso de descarga del BESS Diego de Almagro Sur, corresponde a la potencia activa promedio registrada en el paño J1 de la SE Inca de Oro durante la prueba mínimo técnico en modo descarga.

$$P_{Min \, neta} = 1.8793[MW]$$

5.4.2 Determinación de Potencia Mínima Ciclo de Trabajo Bruta en Modo Descarga

Para determinar la potencia mínima ciclo de trabajo bruta es necesario añadir a P2 las potencias asociadas a servicios auxiliares del BESS Diego de Almagro Sur y pérdidas del sistema colector del banco de baterías, es decir:

$$P_{MT} = P2 + P_{SSAA\ BESS} + P_{SC\ BESS}$$

Como primer paso, se identifican las pérdidas del transformador, el consumo de SS.AA. del PFV y las pérdidas del sistema colector 33kV del PFV, las que se determinan como la diferencia entre la potencia activa neta (P1) y los registros de potencia activa de los paños F1 y F17 de la SE Inca de Oro, es decir:

$$P_T + P_{SSAA_{PFV}} + P_{SC_PFV} + P_{SSAA_{INV}} = 743.7 [kW]$$

Las pérdidas asociadas al sistema colector de cada centro de almacenamiento se dividen en: pérdidas del transformador de SS.AA., pérdidas del transformador colector 0.69/33kV y las pérdidas del cobre del alimentador.

$$P_{Min\ bruta} = P2 + P_{SSAA_BESS_1} + P_{SC_BESS_1} + P_{SSAA_BESS_2} + P_{SC_BESS_2}$$

Las pérdidas asociadas al sistema colector de cada centro de almacenamiento (BESS 1 y 2) se clasifican como: pérdidas del transformador de SS.AA., pérdidas del transformador colector 0.69/33kV y las pérdidas del cobre del alimentador.

$$P_{SC_{BESS_x}} = P_{T_{SS.AA_x}} + P_{T_{colector_x}} + P_{Cu_x}$$

Las pérdidas del transformador de SS.AA. se determinan como la suma de las pérdidas de vacío y un ponderado de las pérdidas de carga en función del cuadrado de la corriente de operación, es decir:

$$P_{T_{SS.AA_x}} = P_{vacio_x} + \frac{I_x^2}{I_n^2} P_{carga_x}$$

Transformador	P_{vacio} [MW]	P_{carga} [MW]	I_{x} [A]	$P_{T_{SS.AA}}$ [kW]
SS.AA. 1 (BESS1)	0.000705	0.001813	22.338	0.724
SS.AA. 2 (BESS 2)	0.000698	0.001811	19.447	0.713

Tabla 5.12: Cálculo de pérdidas de los transformadores de SS.AA.

Las pérdidas del cobre en el conductor de 33kV están asociadas únicamente al calentamiento, por lo tanto, están representadas por la siguiente expresión:

$$P_{Cu x} = 3 * L_x * \rho_x * I_x^2$$

Alimentador	<i>L</i> [km]	ho[ohm/km]	I_{x} [A]	P_{Cu} [kW]
F1	0.14	0.02345	20.905	0.004304
F17	0.16	0.02345	23.675	0.006309

Tabla 5.13: Cálculo de pérdidas del cobre en los alimentadores F1 y F17.

Luego, es necesario determinar las pérdidas de los transformadores colectores 0.69/33kV de BESS.

$$P_{T_{colector_x}} = P_{vacio_x} + \frac{I_x^2}{I_n^2} P_{carga_x}$$

Transformador	P_{vacio} [MW]	P_{carga} [MW]	I_{x} [A]	$P_{T_{colector}}$ [kW]
CB3 (T. BESS 1)	0.003390	0.035012	21.176	6.051
CB4 (T. BESS 2)	0.003353	0.035075	23.911	6.752

Tabla 5.14: Cálculo de pérdidas de los transformadores colectores 0.69/33kV.

La Tabla 5.15 agrupa las pérdidas del sistema colector, las que ascienden a un total de 14.251kW.

Equipamiento	$P_{T_{SS.AA.}}[kW]$	P_{Cu} [kW]	$P_{T_{colectox}}$ [kW]	$P_{SC_{BESS}}[kW]$
BESS 1	0.724	0.004304	6.051	6.779
BESS 2	0.713	0.006309	6.752	7.471
			Total	14.251

Tabla 5.15: Resumen pérdidas sistema colector BESS.

Finalmente, se determina la potencia mínimo técnico para ciclo de trabajo en modo descarga:

$$P_{Min\ bruta} = P2 + P_{SSAA_BESS_1} + P_{SC_BESS_1} + P_{SSAA_BESS}$$

P_{F1} [MW]	<i>P</i> _{F17} [MW]	P2 [MW]	$P_{SS.AA._BESS_1}[kW]$	P _{SS.AABESS_2} [kW]	$P_{SC_{BESS}}[kW]$	$P_{Min\ bruta}[MW]$
1.309	1.314	2.623	8.059	7.217	14.251	2.653

La potencia mínima ciclo de trabajo bruta del BESS Diego de Almagro sur en el proceso de descarga es de 2.653MW.

5.5 PRUEBA DE MÍNIMO TÉCNICO CICLO DE TRABAJO EN MODO CARGA (PRUEBA 4)

Los registros de la prueba de mínimo técnico ciclo de trabajo en modo carga del BESS Diego de Almagro Sur corresponden a las mediciones de generación comprendidas entre 14:20 del día 20 de agosto y las 02:20 del día 21 de agosto de 2023. Durante las pruebas el sistema colector del PFV se encontraba conectado a la SE Inca de Oro, motivo por el cual al comienzo de la prueba (hora solar) se observa el aporte de generación proveniente del PFV. La Figura 5.21 y Figura 5.22 presentan los registros de potencia activa y reactiva en el paño J1 de la SE Inca de Oro. Adicionalmente, se registró la potencia activa en los paños de cada BESS, siendo estos F1 y F17. La Figura 5.23 y Figura 5.24 representan las inyecciones de cada banco de baterías.

Figura 5.21: Registros de potencia activa en paño J1 SE Inca de Oro. Prueba de mínimo técnico ciclo de trabajo (Carga).

Figura 5.22: Registros de potencia reactiva en paño J1 SE Inca de Oro. Prueba de mínimo técnico ciclo de trabajo (Carga).

Figura 5.23: Registros de potencia activa en paño F1 SE Inca de Oro. Prueba de mínimo técnico ciclo de trabajo (Carga).

Figura 5.24: Registros de potencia activa en paño F17 SE Inca de Oro. Prueba de mínimo técnico ciclo de trabajo (Carga).

Por otra parte, se registró el consumo de potencia activa en las barras de baja tensión (BT) de los transformadores de SS.AA. del BESS 1 y 2, es decir, aguas abajo las barras CB3 y CB4 respectivamente. La Figura 5.25 y Figura 5.26 presentan las mediciones registradas.

Figura 5.25: Registros de potencia activa SS.AA. BESS 1. Prueba de mínimo técnico ciclo de trabajo (Carga).

Figura 5.26: Registros de potencia activa SS.AA. BESS 2. Prueba de mínimo técnico ciclo de trabajo (Carga).

Con el objetivo de no incluir la influencia de los paneles solares en la prueba de mínimo técnico ciclo de trabajo en modo de descarga, se utiliza la media de las variables registradas entre las 18:30 del día 20 de agosto y las 02:00 del día 21 de agosto. La Tabla 5.16 detalla el promedio de las variables registradas.

Paño	J1	F1	F17	SS.AA. BESS 1	SS.AA. BESS 2
Potencia activa [MW]	-3.4343	-1.4259	-1.4286	0.001157	0.001085

Tabla 5.16: Promedio variables registradas durante la prueba de mínimo técnico para ciclo trabajo (Carga).

5.5.1 Determinación de Potencia Mínima Ciclo de Trabajo Neta en Modo Carga

La potencia mínima ciclo de trabajo neta para el proceso de descarga del BESS Diego de Almagro Sur, corresponde a la potencia activa promedio registrada en el paño J1 de la SE Inca de Oro durante la prueba mínimo técnico en modo carga.

$$P_{Min \, neta} = -3.4343[MW]$$

5.5.2 Determinación de Potencia Mínima Ciclo de Trabajo Bruta en Modo Carga

Para determinar la potencia mínima ciclo de trabajo bruta es necesario añadir a P2 las potencias asociadas a servicios auxiliares del BESS Diego de Almagro sur y pérdidas del sistema colector del banco de baterías, es decir:

$$P_{MT} = P2 + P_{SSAA\ BESS} + P_{SC\ BESS}$$

Como primer paso, se identifican las pérdidas del transformador, el consumo de SS.AA. del PFV y las pérdidas del sistema colector 33kV del PFV, las que se determinan como la diferencia entre la potencia activa neta (P1) y los registros de potencia activa de los paños F1 y F17 de la SE Inca de Oro, es decir:

$$P_T + P_{SSAA_{PFV}} + P_{SC_PFV} + P_{SSAA_{INV}} = 579.8 [kW]$$

Las pérdidas asociadas al sistema colector de cada centro de almacenamiento se dividen en: pérdidas del transformador de SS.AA., pérdidas del transformador colector 0.69/33kV y las pérdidas del cobre del alimentador.

$$P_{Min\ bruta} = P2 + P_{SSAA_BESS_1} + P_{SC_BESS_1} + P_{SSAA_BESS_2} + P_{SC_BESS_2}$$

Las pérdidas asociadas al sistema colector de cada centro de almacenamiento (BESS 1 y 2) se clasifican como: pérdidas del transformador de SS.AA., pérdidas del transformador colector 0.69/33kV y las pérdidas del cobre del alimentador.

$$P_{SC_{BESS_x}} = P_{T_{SS.AA_x}} + P_{T_{colector_x}} + P_{Cu_x}$$

Las pérdidas del transformador de SS.AA. se determinan como la suma de las pérdidas de vacío y un ponderado de las pérdidas de carga en función del cuadrado de la corriente de operación, es decir:

$$P_{T_{SS.AA_x}} = P_{vacio_x} + \frac{I_x^2}{I_n^2} P_{carga_x}$$

Transformador	P_{vacio} [MW]	P_{carga} [MW]	I_{χ} [A]	$P_{T_{SS.AA}}$ [kW]
SS.AA. 1 (BESS1)	0.000705	0.001813	38.1855	0.761
SS.AA. 2 (BESS 2)	0.000698	0.001811	34.0943	0.743

Tabla 5.17: Cálculo de pérdidas de los transformadores de SS.AA.

Las pérdidas del cobre en el conductor de 33kV están asociadas únicamente al calentamiento, por lo tanto, están representadas por la siguiente expresión:

$$P_{Cu x} = 3 * L_x * \rho_x * I_x^2$$

Alimentador	<i>L</i> [km]	ho[ohm/km]	I_{x} [A]	P_{Cu} [kW]	
F1	0.14	0.02345	24.827	0.006071	
F17	0.16	0.02345	25.512	0.007326	

Tabla 5.18: Cálculo de pérdidas del cobre en los alimentadores F1 y F17.

Por último, es necesario determinar las pérdidas de los transformadores colectores 0.69/33kV de BESS.

$$P_{T_{colector_x}} = P_{vacio_x} + \frac{I_x^2}{I_n^2} P_{carga_x}$$

Transformador	P_{vacio} [MW]	P_{carga} [MW]	I_{x} [A]	$P_{T_{colector}}$ [kW]
CB3 (T. BESS 1)	0.003390	0.035012	25.290	7.186
CB4 (T. BESS 2)	0.003353	0.035075	25.925	7.349

Tabla 5.19: Cálculo de pérdidas de los transformadores colectores 0.69/33kV.

La Tabla 5.20 agrupa las pérdidas del sistema colector, las que ascienden a un total de 16.052kW.

Equipam	iento $P_{T_{SS.AA.}}$	[kW] P_{Cu} [kV	$N] P_{T_{co}}$	lectox [kW]	$P_{SC_{BESS}}[kW]$
BESS	1 0.76	0.0060	71	7.186	7.953
BESS	BESS 2 0.743		26	7.349 8.09	
	•			Total	16.052

Tabla 5.20: Resumen pérdidas sistema colector BESS.

Finalmente, se determina el mínimo técnico bruto para ciclo de trabajo modo carga:

$$P_{Min\ bruta} = P2 + P_{SSAA_BESS_1} + P_{SC_BESS_1} + P_{SSAA_BESS}$$

<i>P</i> _{F1} [MW]	<i>P</i> _{F17} [MW]	P2 [kW]	$P_{SS.AA._BESS_1}[kW]$	P _{SS.AABESS_2} [kW]	$P_{SC_{BESS}}[kW]$	$P_{Min\ bruta}[MW]$
-1.4259	-1.4286	-2.854	11.5781	10.8499	16.052	-2.816

La potencia mínima ciclo de trabajo bruta del BESS Diego de Almagro sur en el proceso de descarga es de -2.816MW.

6 Conclusiones

En base a las mediciones en los paños J1, F1 y F17 de la SE Inca de Oro, y los servicios auxiliares del proyecto BESS Diego de Almagro Sur realizadas entre el 20 y 21 de agosto de 2023, se determina el mínimo técnico neto y bruto. De forma complementaria se obtiene el mínimo técnico para ciclo de carga neto y bruto correspondiente a los procesos de carga y descarga del sistema de almacenamiento de energía en baterías en un máximo de 24 horas, puesto que el BESS DAS tiene un diseño que permite como máximo 1 ciclo diario.

Es importante señalar que, el BESS DAS es capaz de recorrer toda la curva PQ mostrada en la Figura 4.14, por lo que los valores de mínimo técnico planteados en el presente informe no resultan ser una restricción técnica de operación, no obstante, se definen y ensayan dichos valores para dar cumplimiento a la normativa vigente.

Para el proceso de descarga se determinó un mínimo técnico neto de 0.00 MW y un mínimo técnico bruto de 317.0033 kW, para dicho escenario, las pérdidas del sistema colector del BESS son de 8.625 kW, el consumo de los SS.AA. del BESS es de 12.606 kW, las pérdidas del conjunto transformador de poder, sistema colector PFV y SS.AA. PFV asciende a 295.7727 kW.

Por otra parte, en el proceso de carga se determinó un mínimo técnico neto de -304.401 kW y un mínimo técnico bruto de 32.966 kW, para dicho escenario, las pérdidas del sistema colector del BESS son de 8.498 kW, el consumo de los SS.AA. del BESS es de 23.52 kW y las pérdidas del conjunto transformador de poder, sistema colector PFV y SS.AA. PFV asciende a 305.348 kW.

En lo que respecta al ciclo de trabajo de descarga se determinó un mínimo técnico neto de 1.8793 MW y un mínimo técnico bruto de 2.653 MW, para dicho escenario, las pérdidas del sistema colector del BESS son de 14.251 kW, el consumo de los SS.AA. del BESS es de 15.276 kW y las pérdidas del conjunto transformador de poder, sistema colector PFV y SS.AA. PFV asciende a 743.7 kW.

De igual manera, para el ciclo de trabajo de carga se determinó un mínimo técnico neto de -3.4343 MW y un mínimo técnico bruto de -2.816 MW, para dicho escenario, las pérdidas del sistema colector del BESS son de 16.052 kW, el consumo de los SS.AA. del BESS es de 22.428 kW y las pérdidas del conjunto transformador de poder, sistema colector PFV y SS.AA. PFV asciende a 579.8kW.

La Tabla 6.1 resume los mínimos técnicos netos y brutos, además de las pérdidas identificadas en los diferentes equipamientos de las instalaciones. A su vez, la Tabla 6.2 resume los mínimos técnicos netos y brutos para la condición de ciclo de trabajo.

Valor	Magnitud	Prueba 1 $(P_{MT-D}.)$	Prueba 2 (<i>P_{MT-C}</i> .)
P1 (Paño J1 SE Inca de Oro 220 kV)	[MW]	0.00	-0.3044
P2 (Paños F1 y F17 SE Inca de Oro 33 kV)	[MW]	0.2957	0.000947
$P_T + P_{SC_PFV} + P_{SSAA_PFV} + P_{SSAA_{INV}}$	[MW]	0.29577	0.3053
P_{SSAA_BESS}	[kW]	12.606	23.52
P _{SC BESS}	[kW]	8.625	8.498
P _{MT neto}	[MW]	0.00	-0.3044
P _{MT bruto}	[MW]	0.3170	0.03296

Tabla 6.1: Resumen de potencias calculadas y registradas asociadas a pruebas de mínimo técnico.

Valor	Magnitud	Prueba 3 (P _{MT-CT-D} .)	Prueba 4 (P _{MT-CT-C} .)
P1 (Paño J1 SE Inca de Oro 220 kV)	[MW]	1.8793	-3.4343
P2 (Paños F1 y F17 SE Inca de Oro 33 kV)	[MW]	2.623	-2.854
$P_T + P_{SC_PFV} + P_{SSAA_PFV} + P_{SSAA_{INV}}$	[MW]	0.7437	0.5798
P_{SSAA_BESS}	[kW]	15.276	22.428
P _{SC BESS}	[kW]	14.251	16.052
P _{MT neto}	[MW]	1.8793	-3.4343
P _{MT bruto}	[MW]	2.6525	-2.8155

Tabla 6.2: Resumen de potencias calculadas y registradas asociadas a pruebas de mínimo técnico para ciclo de trabajo.

ANEXOS

ANEXO I ANTECEDENTES TÉCNICOS DEL PFV DIEGO DE ALMAGRO SUR

En la Figura 6.1 se presenta el diagrama unilineal de la SE elevadora Inca de Oro.

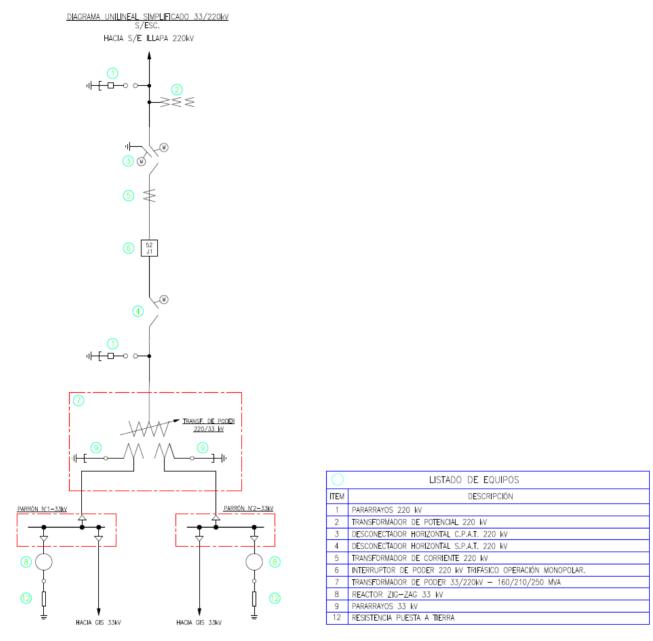


Figura 6.1: Diagrama unilineal simplificado SE Elevadora Inca de Oro 220/33kV.

A su vez, en la Figura 6.2 es posible apreciar el diagrama unilineal correspondiente a uno de los alimentadores que se conectan a la barra de 33kV de la subestación elevadora Inca de Oro.

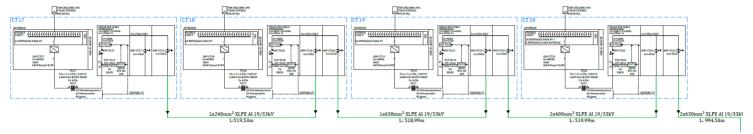


Figura 6.2: Configuración de alimentador con 4 inversores - PFV Diego de Almagro Sur.

I.1. TRANSFORMADORES DE BLOQUE BT / MT

El PFV Diego de Almagro Sur posee 46 transformadores elevadores de tensión, en donde cada uno se conecta a un solo inversor. Las principales características de los transformadores de bloque se presentan a continuación:

Descripción	Detalle
Potencia Nominal	4600 kVA @25°C
Niveles de tensión	33 / 0.69 kV
Grupo de conexión	Dy11
N° de fases	3
Impedancia cc	6.5%
Perdidas en vacío	3.056 kW
Perdidas a plena carga	37.091 kW
Frecuencia	50 Hz
Altitud de trabajo	1.000 m.s.n.m.
Cambiador de taps	Cambiador de taps sin carga

Tabla 6.3: Parámetros eléctricos de transformadores elevadores PFV Diego de Almagro Sur. ANEXO IV

I.2. TRANSFORMADOR DE POTENCIA SE INCA DE ORO

La subestación Inca de Oro, posee un transformador de potencia trifásico de tres devanados 220/33/33 kV de 250 MVA ONAF2, cuyo grupo de conexión es YNd11d11 (conectado a tierra en el lado de 220 kV), con cambiador de tap bajo carga. La foto de placa del transformador se presenta en el ANEXO IV, mientras que en la Tabla 6.4: Parámetros eléctricos del transformador de poder de la SE Inca de Oro. se indican las características principales del transformador de poder:

Descripción	Detalle
Potencia Nominal	150 / 200 / 250 MVA
Niveles de tensión	220 ±8x1.25% / 33 / 33 kV
Refrigeración	ONAN / ONAF1 / ONAF2
Grupo de conexión	YNd11d11
N° de fases	3
Impedancia (%) HV-LV1	11.82% (base 125 MVA)
Impedancia (%) HV-LV2	11.95% (base 125 MVA)
Impedancia (%) LV1-LV2	22.34% (base 125 MVA)
Impedancia homopolar (%)	11.08% (base 250MVA)
Pérdidas cobre HV-LV1	368.86 kW (125 MVA)
Pérdidas cobre HV-LV2	369.56 kW (125 MVA)
Pérdidas cobre Lv1-LV2	720.58 kW (125 MVA)
Pérdidas en vacío	100.7 kW
Frecuencia	50 Hz
Elevación de temperatura	80° C
Ubicación del cambiado de taps	Alta tensión
Altitud de trabajo	1.000 m.s.n.m.

Tabla 6.4: Parámetros eléctricos del transformador de poder de la SE Inca de Oro.

I.3. TRANSFORMADOR ZIG-ZAG (REACTOR DE NEUTRO)

El BESS y PFV Diego de Almagro Sur cuenta con dos reactores de puesta a tierra, uno en cada parrón proyectado en el nivel de 33kV. Los cuales se modelan considerando la impedancia de secuencia cero informada en sus datos de placa.

Figura 6.3: Extracto placas transformadores Zig-Zag.

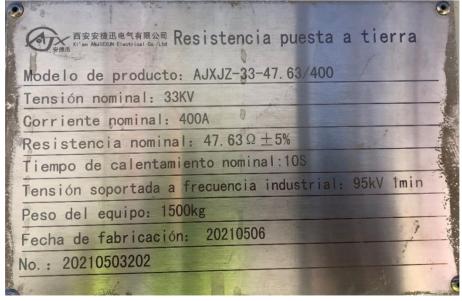


Figura 6.4: Extracto HCTG Resistencia de neutro de reactor.

I.4. CABLES DE LA RED DE MEDIA TENSIÓN EN 33KV

La red colectora de media tensión se contará con un sistema de cables subterráneos, directamente enterrados, esquema de trébol. Se utilizan cuatro tamaños:

- Cable XLPE 630mm²: con un largo aproximado de 28559 m
- Cable XLPE 500mm²: con un largo aproximado de 203 m
- Cable XLPE 400mm²: con un largo aproximado de 18717 m
- Cable XLPE 240mm²: con un largo aproximado de 7378 m

La Figura 6.5 indica las principales características de los cables conductores entre las estaciones convertidoras y las barras principales de media tensión, a su vez, en la Figura 6.6 se presente un diagrama unilineal con la distribución de conductores, centros de transformación e inversores pertenecientes al PFV Diego de Almagro Sur.

Feeder	Desde	Hacia	Cable	Longitud [m]	Feeder	Desde	Hacia	Cable	Longitud [m]
	Barra 3 (FT11)	CT29	2x3cx630mm^2 XLPE Al 19/33kV	1762.64		Barra 3 (FT12)	CT2	2x3cx400mm^2 XLPE Al 19/33kV	2673.41
52F2 (Cto 8)	CT29	CT28	3cx630mm^2 XLPE AI 19/33kV	544.72	52F11 (Cto 1)	CT2	CT1	3cx400mm^2 XLPE AI 19/33kV	442.72
32F2 (Ct0 6)	CT28	CT27	3cx240mm^2 XLPE AI 19/33kV	545.82		CT1	CT12	3cx240mm^2 XLPE AI 19/33kV	1260.86
	CT27	CT26	3cx240mm^2 XLPE AI 19/33kV	546.7		Barra 3 (FT12)	СТ6	2x3cx630mm^2 XLPE Al 19/33kV	1795.74
	Barra 3 (FT11)	CT33	2x3cx630mm^2 XLPE Al 19/33kV	1077.89	52F12 (Cto 2)	CT6	CT5	3cx630mm^2 XLPE AI 19/33kV	382.7
52F3 (Cto 9)	CT 33	CT32	2x3cx400mm^2 XLPE Al 19/33kV	542.71	32F12 (Ct0 2)	CT5	CT4	3cx400mm^2 XLPE Al 19/33kV	384.86
3213 (Ct0 9)	CT32	CT31	3cx630mm^2 XLPE AI 19/33kV	543.81		CT4	CT3	3cx240mm^2 XLPE Al 19/33kV	375.64
	CT31	CT30	3cx240mm^2 XLPE AI 19/33kV	544.28		Barra 3 (FT12)	CT10	2x3cx630mm^2 XLPE Al 19/33kV	909.6
	Barra 3 (FT11)	CT37	2x3cx630mm^2 XLPE Al 19/33kV	393.14	52F13 (Cto 3)	CT10	СТ9	3cx630mm^2 XLPE AI 19/33kV	380.7
52F4 (Cto 10)	CT37	CT36	2x3cx400mm^2 XLPE Al 19/33kV	540.7		СТ9	CT8	3cx400mm^2 XLPE AI 19/33kV	381.93
52F4 (Ct0 10)	CT36	CT35	3cx630mm^2 XLPE AI 19/33kV	541.81		CT8	CT7	3cx240mm^2 XLPE AI 19/33kV	382.39
	CT35	CT34	3cx240mm^2 XLPE AI 19/33kV	542.27		Barra 3 (FT12)	CT16	2x3cx630mm^2 XLPE Al 19/33kV	1675.82
	Barra 3 (FT11)	CT38	2x3cx400mm^2 XLPE Al 19/33kV	2955.65	52F14 (Cto 5)	CT16	CT15	3cx630mm^2 XLPE AI 19/33kV	520.99
52F5 (Cto 4)	CT38	CT25	3cx400mm^2 XLPE AI 19/33kV	1130.77	32F14 (Ct0 3)	CT15	CT14	3cx240mm^2 XLPE AI 19/33kV	520.99
	CT25	CT11	3cx240mm^2 XLPE AI 19/33kV	604.91		CT14	CT13	3cx240mm^2 XLPE AI 19/33kV	521.5
	Barra 3 (FT11)	CT42	2x3cx630mm^2 XLPE Al 19/33kV	1751.68		Barra 3 (FT12)	CT24	2x3cx630mm^2 XLPE Al 19/33kV	313.31
F3FC (Cho 11)	CT42	CT41	3cx630mm^2 XLPE AI 19/33kV	563.44	52F15 (Cto 7)	CT24	CT23	2x3cx400mm^2 XLPE Al 19/33kV	516.98
52F6 (Cto 11)	CT41	CT40	3cx400mm^2 XLPE AI 19/33kV	490.64	52F15 (Ct0 7)	CT23	CT22	3cx630mm^2 XLPE Al 19/33kV	516.98
	CT40	CT39	3cx240mm^2 XLPE AI 19/33kV	496.2		CT22	CT21	3cx240mm^2 XLPE AI 19/33kV	517.52
	Barra 3 (FT11)	CT46	2x3cx630mm^2 XLPE Al 19/33kV	959.93		Barra 3 (FT12)	CT20	2x3cx630mm^2 XLPE Al 19/33kV	994.56
F3F7 (Cto 13)	CT46	CT45	3cx630mm^2 XLPE Al 19/33kV	388.27	F3F1C (C+a C)	CT20	CT19	2x3cx400mm^2 XLPE Al 19/33kV	519.99
52F7 (Cto 12)	CT45	CT44	3cx400mm^2 XLPE Al 19/33kV	387.34	52F16 (Cto 6)	CT19	CT18	3cx630mm^2 XLPE AI 19/33kV	518.99
		CT43	3cx630mm^2 XLPE AI 19/33kV	387.88		CT18	CT17	3cx240mm^2 XLPE AI 19/33kV	519.53

Figura 6.5: Detalle cables red media tensión 33kV.

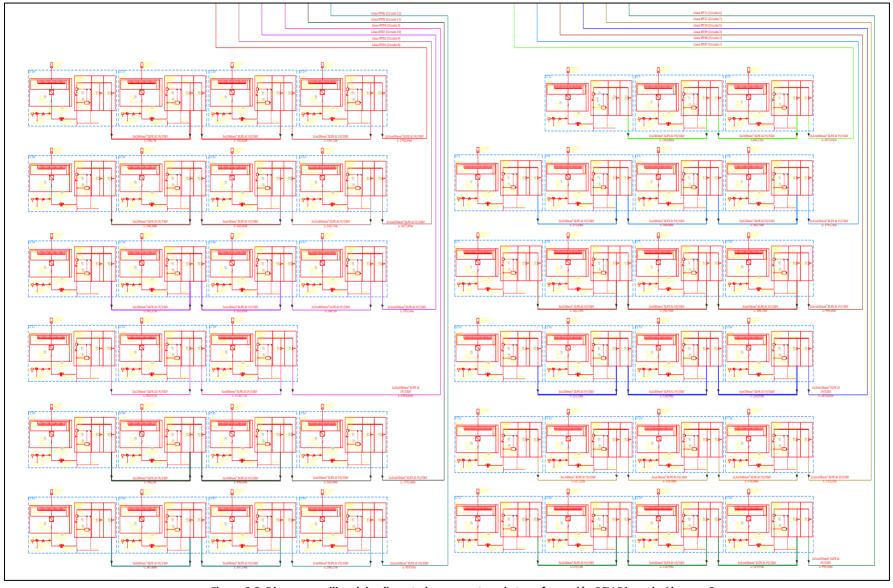


Figura 6.6: Diagrama unilineal de alimentadores y centros de transformación PFV Diego de Almagro Sur.

I.5. BANCO DE CONDENSADORES

El BESS y PFV poseen un banco de condensadores de 40MVAr de potencia reactiva, distribuidos de manera equitativa entre ambas barras de 33kV, es decir, un banco de 20MVAr por cada una.

Figura 6.7: Fotos de placa banco de condensadores.

I.6. TRANSFORMADOR DE SERVICIOS AUXILIARES PFV DAS 33/0.4KV

En el PFV Diego de Almagro Sur se contará con dos transformadores de servicios auxiliares 33/0.4kV. Las características eléctricas señaladas en la placa de características y ensayos respectivos del transformador realizados por el fabricante, se muestra a continuación:

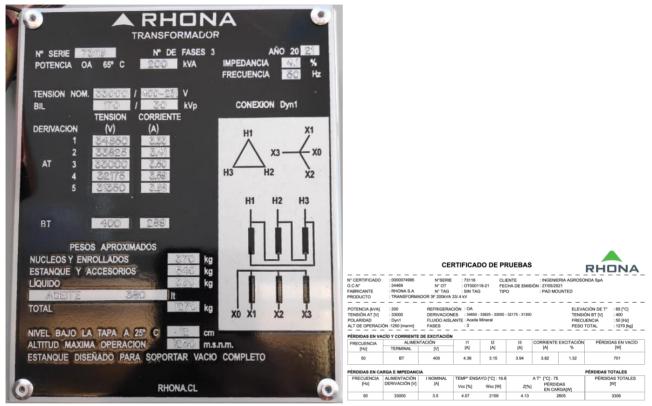


Figura 6.8:Captura de parámetros del Transformadores de SSAA PFV DAS, Fabricante RHONA.

I.7. CARACTERÍSTICAS GENERALES DE INVERSORES SOLARES

El PFV Diego de Almagro Sur cuenta con paneles solares de sistema bifacial y son seguidores de hilera simple con retroceso. La totalidad de los paneles solares se conectan a 46 inversores modelo SMA SC 4600-UP de potencia nominal de 4.6 MVA. Cada uno de estos inversores se encuentra asociado a un centro de transformación modelo MVPS 4600-S2. Las características relevantes de los inversores y centros de transformación, entregadas por el fabricante SMA son las siguientes:

Número	Nomenclatura	Componentes principales
1	MVT	4140 kVA 33/0.69 kV KNAN hermetically sealed liquid immersed transformer
1	IVIVI	(SBG)
2	INV	Central Inverter SC 4600-UP
3	BW	Low Voltage Busbar/Busway between inverter and transformer
4	MVSG	Medium Voltage Ring Main Unit Switchgear SIEMENS 8DJH RRL with Circuit
4	IVIVSG	breaker
5	MVC	3 x Medium Voltage Cable N2XS(F)2Y 18/30kV 70mm² between transformer
ס	IVIVC	and Medium Voltage Switchgear
6	STSD	230V 50 Hz low voltage distribution panel
7	SCAS-P	Low voltage cable from BW to fuse holder for installation of auxiliary power
'	SCAS-P	supply

Tabla 6.5: Componentes principales del centro de transformación MVPS 4600-S2 (Fuente: Fabricante SMA).

Power Class	:			MVPS-4200-S2-US-10
Target Country	:	CL	\rightarrow	Chile
Inverter type	:	0	\rightarrow	SC UP
Inverter Power	:	3	\rightarrow	4600 kVA
Ambient Temperature	:	1	\rightarrow	-25°C to +55°C
Altitude	:	1	\rightarrow	1001 - 2000 m
Environment	:	0	\rightarrow	Standard
MV Transformer	:	1	\rightarrow	KNAN
Transformer Protection	:	1	\rightarrow	Full Protection
Nominal Voltage	:	Н	\rightarrow	33 kV
Nominal Frequency	:	0	\rightarrow	50 Hz
Transformer Vector Group	:	0	\rightarrow	Dy11
Transformer Tap Changer	:	1	\rightarrow	With
Transformer Shield Winding	:	0	\rightarrow	Without
Transformer Load Profile	:	6	\rightarrow	24 Hours
Transformer Losses	:	1	\rightarrow	Eco Design 1
Oil Containment	:	1	\rightarrow	With
MV Switchgear	:	2	\rightarrow	3F-SD-SD-CB-36 kV
Accessories MV Switchgear	:	1	\rightarrow	Auxiliary Contacts
LV-Transformer	:	2	\rightarrow	20 kVA, 400 V
Safety Equipment	:	0	\rightarrow	Without
Monitoring	:	1	\rightarrow	MVSG
Cable Entry Kit	:	1	\rightarrow	With
Transport Packaging	:	1	\rightarrow	Sea Freight
Country Package	:	0	\rightarrow	Without
Language	:	ES	\rightarrow	Spanish
Factory Warranty	:	0	\rightarrow	1 year
Customized Solution	. :	1	\rightarrow	Yes

Figura 6.9: Características centro de transformación MVPS 4600-S2 (Fuente: Fabricante SMA).

Inverter type	$I_N = I_k[A]$	I," [A]	i, [A]
SC 4000 UP (-US)	3850	5144	7315
SC 4200 UP (-US)	3850	5144	7315
SC 4400 UP (-US)	3850	5144	7315
SC 4600 UP (-US)	3850	5144	7315

Figura 6.10: Corrientes nominales y de cortocircuito MVPS 4600-S2 (Fuente: Fabricante SMA).

En la Figura 6.11 y Figura 6.12 se evidencia el aporte de potencia activa y reactiva que puede alcanzar cada inversor para distintos niveles de tensión.

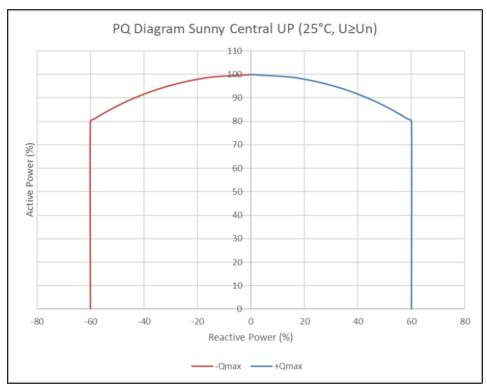


Figura 6.11: Curvas de capacidad de potencia activa y reactiva 25°C y tensión de red U≥Un − Inversores SMA SC 4600-UP. (Fuente: Datasheet fabricante).

B&B Asociados SpA PÁGINA 62 DE 78

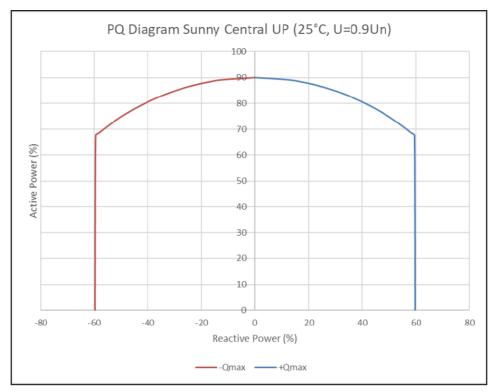


Figura 6.12: Curvas de capacidad de potencia activa y reactiva 25°C y tensión de red U=0.9Un – Inversores SMA SC 4600-UP . (Fuente: Datasheet fabricante).

ANEXO II DATASHEET INVERSOR Y CONSUMOS AUXILIARES PFV

La información técnica de inversores y centros de transformación del tipo MVPS 4600-S2 entregada por el fabricante, se presenta a continuación:

DOCUMENTATION

Project Diego del Almagro

Order Number	516-3005766
SAP Number	676953
Project Name	Diego del Almagro (Chile) - 1
Customer	Colbun
Change Proposal Number	1267
Station Serial Number	CT 422/20

Installed N	Installed Main Components						
Number	Name	Component					
1	MVT	4140 kVA 33/0.69 kV KNAN hermetically sealed liquid					
		immersed transformer (SBG)					
2	INV	Central Inverter SC 4600-UP					
3	BW	Low Voltage Busbar/Busway between inverter and transformer					
4	MVSG	Medium Voltage Ring Main Unit Switchgear					
		SIEMENS 8DJH RRL with Circuit breaker					
5	MVC	3 x Medium Voltage Cable N2XS(F)2Y 18/30kV 70mm² between transformer					
		and Medium Voltage Switchgear					
6	STSD	230V 50 Hz low voltage distribution panel					
7	SCAS-P	Low voltage cable from BW to fuse holder for installation of auxiliary power					
		supply					

Power Class	:			MVPS-4200-S2-US-10
Target Country	:	CL	\rightarrow	Chile
Inverter type	:	0	\rightarrow	SC UP
Inverter Power	:	3	\rightarrow	4600 kVA
Ambient Temperature	:	1	\rightarrow	-25°C to +55°C
Altitude	:	1	\rightarrow	1001 - 2000 m
Environment	:	0	\rightarrow	Standard
MV Transformer	:	1	\rightarrow	KNAN
Transformer Protection	:	1	\rightarrow	Full Protection
Nominal Voltage	:	Н	\rightarrow	33 kV
Nominal Frequency	:	0	\rightarrow	50 Hz
Transformer Vector Group	:	0	\rightarrow	Dy11
Transformer Tap Changer	:	1	\rightarrow	With
Transformer Shield Winding	:	0	\rightarrow	Without
Transformer Load Profile	:	6	\rightarrow	24 Hours
Transformer Losses	:	1	\rightarrow	Eco Design 1
Oil Containment	:	1	\rightarrow	With
MV Switchgear	:	2	\rightarrow	3F-SD-SD-CB-36 kV
Accessories MV Switchgear	:	1	\rightarrow	Auxiliary Contacts
LV-Transformer	:	2	\rightarrow	20 kVA, 400 V
Safety Equipment	:	0	\rightarrow	Without
Monitoring	:	1	\rightarrow	MVSG
Cable Entry Kit	:	1	\rightarrow	With
Transport Packaging	:	1	\rightarrow	Sea Freight
Country Package	:	0	\rightarrow	Without
Language	:	ES	\rightarrow	Spanish
Factory Warranty	:	0	\rightarrow	1 year
Customized Solution	:	1	\rightarrow	Yes

Figura 6.13: Placa de datos Centro de trasnformación tipo MVPS-4600 S2- PFV Diego de Almagro Sur.

Respecto al consumo de servicio auxiliares de cada centro de transformación, el fabricante en el documento [19], indica lo siguiente: "El inversor convierte la energía de CC a CA, lo que requiere algo de energía auxiliar para el sistema de control, comunicación y enfriamiento. La cantidad de energía auxiliar depende de la temperatura ambiente y de la potencia de salida producida. La alimentación auxiliar se extrae del lado de CA en los terminales del inversor.

Si la potencia fotovoltaica disponible supera el 100 % de la potencia de CC que puede convertir el inversor según el valor nominal de la placa de datos, el inversor produce algo más de potencia de CA para compensar sus pérdidas internas. De esta forma el consumo auxiliar efectivo del inversor es de 0 kVA en cuanto la potencia DC supera el 100%."

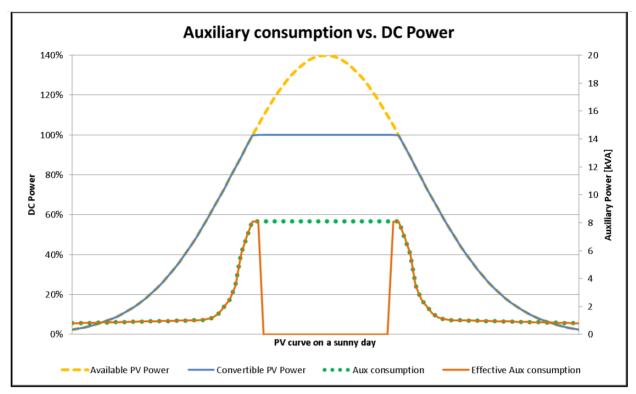


Figura 6.14: Consumo de servicios auxiliares en un día soleado.

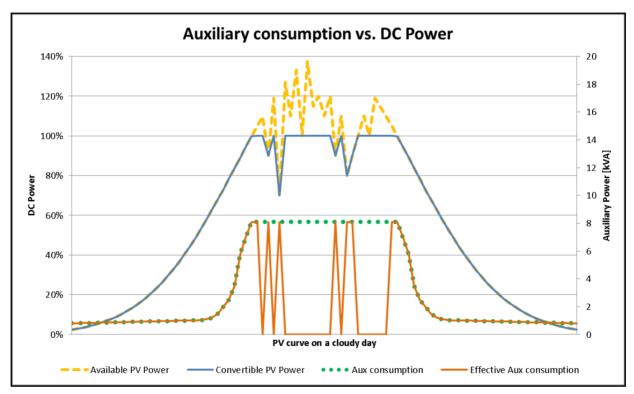


Figura 6.15: Consumo de servicios auxiliares en un día noublado.

PÁGINA 67 DE 78

ANEXO III DATASHEET DE LOS PANELES SOLARES

Mono Multi Solutions

BIFACIAL DUAL GLASS MONOCRYSTALLINE MODULE

500W+

MAXIMUM POWER OUTPUT

21.0%

MAXIMUM EFFICIENCY

0~+5W

POSITIVE POWER TOLERANCE

Founded in 1997, Trins Solar is the worlds leading total solution provider for solar energy. With local presence cround the globe, Trins Solar is able to provide exceptional service to each customer in each market and deliver our innovative, reliable products with the backing of Trins as a strong, bankable brand. Trins Solar now distributes its PV products to over 100 countries all over the world. We are committed to building strategic, mutually beneficial collaborations with instaliers, developers, distributors and other partners in chiving smart energy together.

Comprehensive Products and System Certificates

IBCB1.215/IBCB1790/IBCB1701/IBCB2716/UL1703 ISO 9001: Quality Management System ISO14001: Environmental Management System ISO14064: Greenhouse Gase Emissions Verification ISO45001: Occupational Health and Safety Management System

TSM-DEG18MC.20(II)

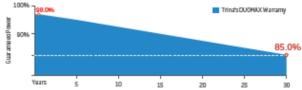
High customer value

- Lower LCOE (Levelized Cost Of Energy), reduced BOS (Balance of System) cost, shorter payback time
- Lowest guaranteed first year and annual degradation; extended 30-year warranty
- Designed for compatibility with existing mainstream system components
- Higher return on Investment

High power up to 505W

- Large area cells based on 210mm silicon wafers and 1/3-cut cell technology
- Up to 21.0% module efficiency with high density interconnect technology
- Multi-busbar technology for better light trapping effect, lower series resistance and improved current collection

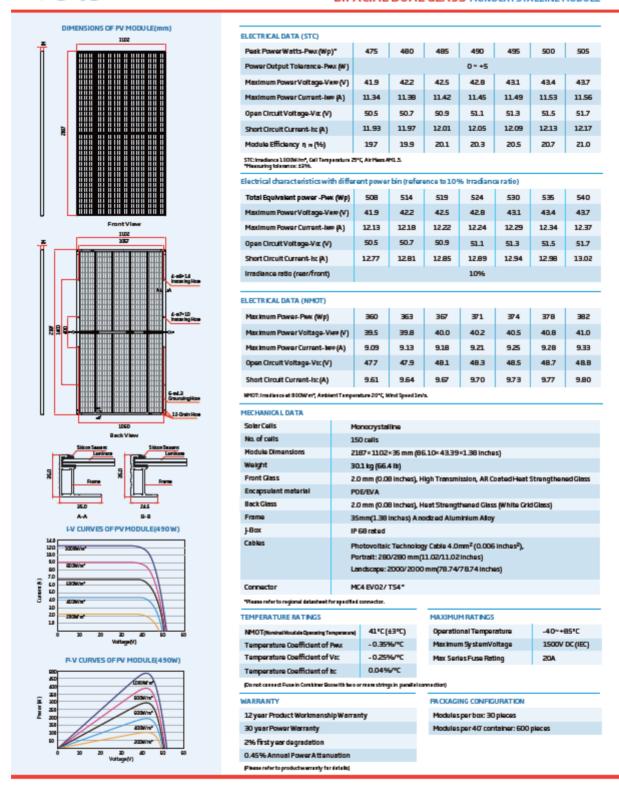
High reliability


- Minimized micro-cracks with innovative non-destructive cutting technology
- Ensured PID resistance through cell process and module material control
- Resistant to harsh environments such as salt, ammonia, sand, high temperature and high humidity areas
- Mechanical performance up to 5400 Pa positive load and 2400 Pa negative load
- Certificated to fire class A

High energy yield

- Excellent IAM (Incident Angle Modifier) and low irradiation performance, validated by 3rd party certifications
- The unique design provides optimized energy production under inter-row shading conditions
- Lower temperature coefficient (-0.35%) and operating temperature
- Up to 25% additional power gain from back side depending on albedo

Trina Solar's Duomax Performance Warranty



BIFACIAL DUAL GLASS MONOCRYSTALLINE MODULE

CAUTION: READ SAFETYAND INSTALLATION INSTRUCTIONS BEFORE USING THE PRODUCT.

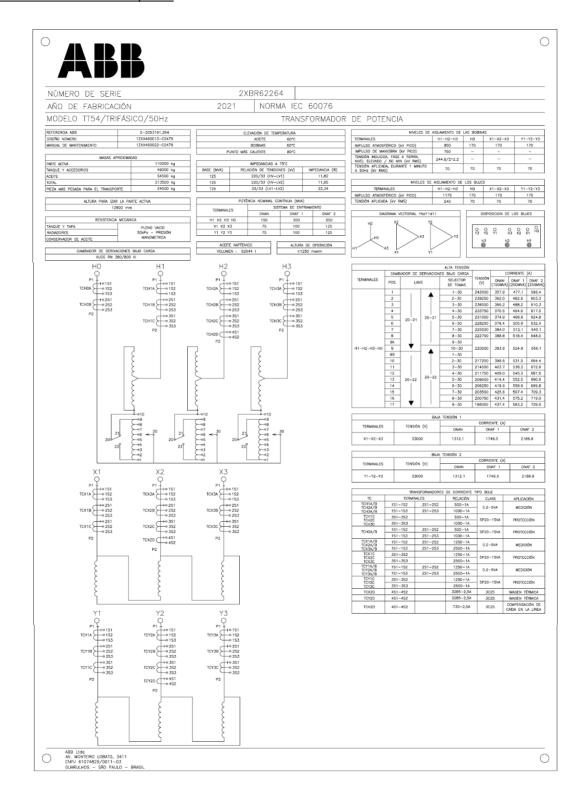
© 2020 Trina Solar Limited. All rights reserved. Specifications included in this datasheet are subject to change without notice.

Version number: TSM, EN, 2020, A www.trinasolar.com

ANEXO IV DATASHEET Y PRUEBAS FÁBRICA TRANSFORMADOR DE BLOQUE BT/MT Y TRANSFORMADOR DE PODER PFV DIEGO DE ALMAGRO SUR

Placa de datos transformadores de bloque BT/MT

Ensayos de fabrica transformadores de bloque BT/MT


Tipo	: DNT 4	1140 H/3	0			A	o.d.fáb : 2 no de const	r. : 2	2020					
Prescri-		N 60076												
Protecci	rmátor en a ón anticorr	osiva: pin												
Max 460	00kVA @ 2	25°C tem	peratur	e ambient	e									
Potencia	: 4140.0	k VA Fr	ec.: 5	0,00Hz T	ens. d c.	ci: 6.6	5% Cl.:	LT	M.d.op.: DB	U	n(kV)	: 36.0	0/3.6	
Ten. non	nī. [V]: T33	000/690					Gr.de di. Clase de	nrot :	Dy [1	C	oq. acol	. : AK4	1183	
Corr. no	m.[A]: ⁻ 72	,4/3464		-,			Clase de T.de refr	cúst. :	KNA	AN Po	[W]	de med. 3056 37091		
Derivacio	ones : T±	2x2,5%					Refrigera Peso me Peso tota	dio :	Midel eN 12 1.8 8.5	04 uk 80t Lp	il [%]: :n [%] :a[dB(A)	99.486	/ kP	EI [%] : 0.2
Med	dición en va	cío	со	n conex.	ado t.i.	690 V y	50.00 Hz							
Fase	Leer	0	- T	Volt.	Leer	(C Am	p. A	.va.medio	Leer		Σ	С	vatio
2U-2V 2V-2W 2W-2U				687.74 690.82 691.25			3.		4.30 0 0.124 %					3056
	fic. en cort						y 50.00 F					- 1	_	1
Fase 1U-1V	Leer	1 0	- 1	Volt. 1090.79	Leer	y (C Am	ip. A	A.va.medio	Leer	Spir	Σ	С	vatio
1V-1W 1W-1U	į		1	1090.79 1092.47 1122.91		į	37		37.31					- 34.0 7957
Fase	Leer	(C 1	Volt.	Leer	(C Am	ip. A	.va.medio	Leer	1	Σ	С	vatio
	E 00 I	D- 144 I - E				115°C		k en	001 0-14	1 120		Di. M. I.	-l 0/	0/ 1
2995	7 43	378 3	²R W 32713	Pk W	ukn %	6 ur % 0.90	ux % c	on	°C] Pz W	I²R	w I	Pk W	ukn %	ur % ux
2995 Med	7 43 dic. de la re	378 3	² R W 32713 c	Pk W 37091	ukn % 6.51	6 ur % 0.90 ores de m	ux % c 6.45 edic.[Ohm])	on	İ	I²R	1	Pk W	ĺ	ľ
2995 Med	i7 43 dic. de la re	378 3	² R W 32713 c	Pk W 37091 on 23.5 °	ukn % 6.51	6 ur % 0.90 ores de m 1W-1U	ux % c 6.45 edic.[Ohm]] 2U-	on	2V-2W	1	1740	1	Esc.de	ur % ux
2995 Med Esc.de te 33000	i7 43 dic. de la re	sistencia	² R W 32713 c	Pk W 37091 on 23.5 °	ukn % 6.51 C (Valc 1.621	6 ur % 0.90 pres de m 1W-1U	ux % c 6.45 edic.[Ohm]]	on -2V	2V-2W	1	2W-2U	1	Esc.de	e ten.V
2995 Med Esc.de te 33000 Med	ion 43 dic. de la re en.V 0.0	sistencia 1U-1V	² R W 32713 c	Pk W 37091 on 23.5 1V-1W	ukn % 6.51 C (Valc 1.621	6 ur % 0.90 pres de m 1W-1U	ux % c 6.45 edic.[Ohrm] 2U-	-2V 0006221	2V-2W	1	2W-2U	1	Esc.de	e ten.V
2995 Med Esc.de te 33000 Med onexión	ic. de la re en.V 0.0 dición de la V 346	sistencia 1U-1V relación o	2R W 32713 c 1.617	Pk W 37091 on 23.5 1V-1W	ukn % 6.51 C	6 ur % 0.90 ores de m 1W-1U 1.	ux % c 6.45 edic.[Ohm] 2U- 616 0.0	-2V 0006221	2V-2W	1	2W-2U	1	Esc.de	e ten.V
2995 Med Esc.de te 33000 Med fonexión ransf. no	ico de la reen.V 0.0 dición de la V 346	378 3 sistencia 1U-1V relación c 550 22 06 02	2R W 32713 c 1.617 de trans	Pk W 37091 0n 23.5 1V-1W sformación 1330 147.	ukn % 6.51 C	(Error 32175	ux % c 6.45 edic.[Ohm]] 2U- .616 0.6 (%)	-2V 0006221	2V-2W	1	2W-2U	1	Esc.de	e ten.V
2995 Med 33000 Med conexión ransf. no U-1V/2U V-1W/2V	ico de la reen.V 0.0 dición de la V 346	378 3 sistencia 1U-1V relación o 550 222 002	2R W 32713 c 1.617 de trans 33825 49.02 0.06 0.03	Pk W 37091 0n 23.5 1V-1W sformación 1330 147.	ukn % 6.51 C (Valc)	(Error 32175 46.63 0.07 0.04	ux % c 6.45 edic.[Ohm]] 2U- .616 0.0 31350 45.43	-2V 0006221	2V-2W	1	2W-2U	1	Esc.de	e ten.V
2995 Med Esc.de te 33000 Med Conexión ransf. no U-1V/2U V-1W/2V Ensa	ic. de la reen.V 10.00 10.	378 3 sistencia 1U-1V relación o 550 222 002	2R W 32713 c 1.617 de trans 33825 49.02 0.06 0.03	Pk W 37091 0n 23.5 1V-1W sformación 1330 147.	ukn 9 6.51 C (Valor 1.621	(Error 32175 46.63 0.07 0.04	ux % c 6.45 edic.[Ohm]] 2U- .616 0.0 31350 45.43	-2V 0006221	2V-2W	1	2W-2U	1	Esc.de	e ten.V
2995 Med Esc.de to 33000 Med onexión ransf. no U-1V/2U V-1W/2V Ense En. del a	ic. de la reen.V 10.0	378 3 sistencia 1U-1V relación o 550 222 002	2R W 32713 c 1.617 de trans 33825 49.02 0.06 0.03	Pk W 37091	ukn 9 6.51 C (Valor 1.621	6 ur % 0.90 ores de m 1W-1U	ux % c 6.45 edic.[Ohm]] 2U- .616 0.0 31350 45.43	-2V 0006221	2V-2W 0.0006	1	2W-2U		Esc.de 69	e ten.V
2995 Med 33000 Med onexión ransf. no U-1V/2U V-1W/2V W-1U/2V Ensa En. del a	ic. de la reen.V 10.0	sistencia 1U-1V relación e 550 22 002 lamiento	2R W 32713 c 1.617 de trans 33825 49.02 0.06 0.03	Pk W 37091	ukn 9 6.51 C (Valco 1.621 1.	6 ur % 0.90 ores de m 1W-1U	ux % c 6.45 edic.[Ohm]] 2U- .616 0.0 31350 45.43	En. ent	0.0006	1	2W-2U		Esc.de 69	e ten.V
Med Esc.de te 33000 Med Conexión Transf. nc U-1V/2U V-1W/2V W-1U/2V Ense En. del a	ic. de la reen.V 10.00 10.	sistencia 1U-1V relación e 550 22 002 lamiento	2R W 32713 c 1.617 de trans 33825 49.02 0.06 0.03	Pk W 37091	ukn 9 6.51 C (Valco 1.621 1.	6 ur % 0.90 ores de m 1W-1U	ux % c 6.45 edic.[Ohm]] 2U- .616 0.0 31350 45.43	2V 0006221	0.0006	1	2W-2U		Esc.de 69	Hz sec
2995 Med Esc.de te 33000 Med Conexión ransf. no U-1V/2U U-1V/2V Ense En. del a t.s./t.f. N t.l./Núcl.	ic. de la reen.V 10.00 10.	3 3 3 3 3 3 3 3 3 3	2R W 32713 c 1.617 de trans 33825 49.02 0.06 0.03	Pk W 37091	ukn 9 6.51 C (Valc 1.621 1.62	6 ur % 0.90 ores de m 1W-1U	ux % c 6.45 edic.[Ohm]] 2U- .616 0.0 31350 45.43	En. ent	0.0006	1	2W-2U		Esc.de 69	e ten.V
2995 Med Sc. de te 33000 Med onexión ransf. no U-11//2U V-11W/2Y W-1U/2Y Ensa En. del a L.S./t.i. Ñ Li./Núcl. Ensayos	ic. de la reen.V 10.0	sistencia 1U-1V relación e 550 22 002 lamiento	28 W 2713 c c 7 1.617 de trans 33825 49.02 0.06 0.03 0.02	Pk W 37091	ukn 9 6.51 C (Valc 1.621 1.62	6 ur % 0.90	ux % c 6.45 edic.[Ohm]] 2U- .616 0.0 31350 45.43	En. ent	0.0006	274 	2W-2U 0.000€		69 V V	e ten.V 00.0

PÁGINA 71 DE 78

Placa de datos transformador de poder

B&B Asociados SpA PÁGINA 72 DE 78

Ensayos de fabrica transformador de poder

46	▶	
		ĸ
	_	

PROTOCOLO DE ENSAYOS

Nº de Protocolo: 1ZBR 21 - 0338

Resumen

Pág 3 de 127

Nº de Serie: 2XBR62264

Pérdidas	e	Intensidad	l de	Vacío
----------	---	------------	------	-------

Tensión		Potencia Base	Pérdidas en	Vacío (kW)	Intensidad de Vacío		
(% de la Nominal)	Posición	(MVA)	Medidas	Garantizadas	Medida	Garantizada	
110	-/17/-	250	151,0		0,2326 %	1,000 %	
100	-/17/-	250	96,38	131,0	0,04832 %	0,07000 %	
90	-/17/-	250	72,66		0,03419 %		

Pérdidas en Carga y Tensión de Cortocircuito

Perdidas en Carga y Tension de Cortocircuito									
Terminales	Tensiones	Posiciones	Potencia Base	Pérdidas	a Temp. Ref.	Impedancia a Temp. Ref.			
Terminates	(kV)	Posiciones	(MVA)	Medidas (kW)	Garantizadas (kW)	Medida (%)	Garantizada (%)		
H1-H2-H3-H0 X1-X2-X3 Y1-Y2-Y3	220 / 33 / 33	9/-/-	150	271,75		7,57			
H1-H2-H3-H0 X1-X2-X3 Y1-Y2-Y3	220 / 33 / 33	9/-/-	250	758,87	904,00	12,62			
H1-H2-H3-H0 X1-X2-X3	242 / 33	1/-	125	358,25		12,09	12,60		
H1-H2-H3-H0 X1-X2-X3	220 / 33	9/-	125	368,86		11,82	12,20		
H1-H2-H3-H0 X1-X2-X3	198 / 33	17 / -	125	398,83		11,73	12,10		
H1-H2-H3-H0 Y1-Y2-Y3	242 / 33	1/-	125	364,07		12,23	12,60		
H1-H2-H3-H0 Y1-Y2-Y3	220 / 33	9/-	125	369,56		11,95	12,20		
H1-H2-H3-H0 Y1-Y2-Y3	198 / 33	17 / -	125	394,07		11,85	12,10		
X1-X2-X3 Y1-Y2-Y3	33 / 33	-/-	125	720,58		22,34			

Pérdidas Totales

	Tensiones		Potencia	Pérdidas a Temp. Ref.		
Terminales	(kV)	Posiciones	Base (MVA)	Medidas (kW)	Garantizadas (kW)	
H1-H2-H3-H0 X1-X2-X3 Y1-Y2-Y3	220 / 33 / 33	9/-/-	250	855,25	1072	

Fecha: 26-abr-2021 Ingeniero de Ensayo: Robson Montes Departamento de Ensayo: PGTR

B₂/

Página 73 de 78

ANEXO V ESPECIFICACIONES INSTRUMENTOS DE MEDICIÓN

SPECIFICATIONS						
Voltage Inputs 4 channels, 600VAC CAT IV, 1000VAC CAT III						
Current Channels	4 channels					
	Voltage output CTs (0-10V peak)					
Line Frequency	40-70Hz					
Waveform Sampling	256 Sample/Cycle at 50/60Hz					
Measurements	Continuous PQZ file					
Accuracy	IEC 61000-4-30 Class A					
LED Indicators	11 Bi-color LEDs					
	COMMUNICATION					
USB	PQZ file download, FW upgrade & clock setting					
LAN	Available in extension module					
	POWER					
Power Supply	100-240VAC 50/60Hz 10W					
	5VDC over USB					
Battery	Available in extension module					
Ride through	15sec					
	MECHANICAL					
Operating Temperature	-20 to + 65 °C (*)					
Humidity	5% to 95% non-condensing					
Maximum Operation Altitude	2,000m (1.24Mi)					
IP protection	IP 40 (**)					
Weight	0.4kg					
Dimensions	180 x 115 x 60					
	STORAGE					
Nonvolatile memory	SD card supporting hot swap					
S	YNCHRONIZATION					
Internal clock 10 ppm						
External synchronization 1) T>60°C requires an external pow	NTP available in extension module					

Figura 6.16: Datasheet instrumento de medida PURE BlackBox marca Elspec.

Página 74 de 78

	Wa	veform Sampling				
Voltage Sampling Rate		1024 Samples/Cycle				
Current Sampling Rate		256 Samples/Cycle				
Voltage Harmonics (Individual	, Even, Odd, Total) Up to -	511 th				
Current Harmonics (Individual	, Even, Odd, Total) Up to -	127 th				
Type of Analog to Digital Conv	erter	16/20 ¹ bit				
	S	torage Capacity				
Internal Memory		32 GB/32TB ²				
	Pow	er Quality Analysis				
ransient Detection, Microsecon	nds (50Hz/60Hz)	19.5/16.3µs				
	Con	munication Ports				
Ethernet Ports		3				
Wi-Fi Communications (802.11	g)	1				
Power Over Ethernet (PoE-Out	r)	1				
Digital Input		4				
RS-232		1				
RS-485		1				
		Physical				
Dimensions mm		314 X 84 X 271				
Weight		3.7kg				
		Control				
Comprehensive web server for	local and remote real-time monitoring	and control				
	Арј	plicable Standards				
Measurement Standards		EN50160, IEEE1159, IEEE519, IEC61000-4-15, IEC61000-4-7, IEC61000-4-30 Class A				
EMC Standards		EN61326, CFR47FCC, CISPR11 Group 1, FCC PART 15 Subpart B, EN61010-2, IEC61000-3-3, IEC61000-4-2, IEC61000-4-3, IEC61000-4-4, IEC61000-4-5, IEC61000-4-6, IEC61000-4-11				
Environmental Standards		IEC60068-2-1, 2, 6, 27, 30, 75				
Safety Standards		EN61010-1:2001 2nd Edition				
Po	ower Supply		Voltage			
Operating Range	100-260 VAC: 50/60 Hz 100-300	Voltage Channels	4 (3 Phases + Neut.)+ 1 DC			
	VDC	Nominal Full Scale	1000V			
Auxiliary DC Supply	48 Vdc	Maximum Peak Measurement	8000V			
Auxiliary Supply	PoE In According to 802.3af	Input Impedance	3ΜΩ			
Battery Backup	2 Hours	Uncertainty	0.1% of Nominal			
Time			Current			
Real Time Clock	±1 Second per 24 Hours	Current Channels	4 (3 Phases + Neut.)+ 1Grn/DC			
Synchronization Device	Uncertainty	Current Channels Receive	11-14: 0-10 VPk I5: 0-3 VPk			
GPS	100-200μs	From Clamp	11-1-1. U-10 VFK 13: U-3 VFK			
IRIG B	100-200µs	Uncertainty	0.1% ±0.1 mV			
SNTP Server	50-100μs	Frequency				
DCF-77	±15ms	Fundamental Frequency	42.5 Hz to 69 Hz			
Environmental Conditions		Frequency Resolution	10 mHz			
Operation Temperature	0°C - 50°C (32°F - 122 °F)	Frequency Accuracy	±10 mHz			
Storage Temperature	-20°C - 60°C (-4°F - 140 °F)	Disclaimer: Specifications subject to cha	inges without prior notice			
Effective bits		1				

ivalent memory size needed without compression

Figura 6.17: Datasheet instrumento de medida G4500 marca Elspec.

B&B Asociados SpA PÁGINA 75 DE 78

Certificado de calibración

	G4K Calibration Test-Test Report									
Date & Time: 24/01/2022 12:37:44.115			ime: 24/01/2022 12:37:44.115	Operator Name: Doron			Total Test Time: 01:48:24			
	UUT Path: G4000K SYSTEM\Cal. Test \G4K Calibration Test Serial Number: 00-60-35-33-66-C0				Batch Number: 13					
UUT Type:			UUT Type:	G4500						
	UUT S/N:					00-60-35-33-66-C0				
BOOT Version			BOOT Version		0.3.02					
		Application Version				0.4.11.73				
		DSP SW Version			5.6					
No	Stage	Module	Test Type	Measured Parameter	Spec Low	Spec High	Result	Pass/Fail	Time	
2				Log In	Pass	-	Pass	4	24/01/2022 12:37:44.115	
3	Stage1	G4 System	Unit Type	CPU Version	G4500	-	G4500	4	24/01/2022 12:38:06.411	
4	Stage1	G4 System	Unit Clamps Types	Channel:1 Clamp Type	Mini_1To6A_1A_0.1V	-	Mini_1To6A_1A_0.1V	4	24/01/2022 12:38:23.789	
5	Stage1	G4 System	Unit Clamps Types	Channel:2 Clamp Type	Mini_1To6A_1A_0.1V	-	Mini_1To6A_1A_0.1V	4	24/01/2022 12:38:23.904	
6	Stage1	G4 System	Unit Clamps Types	Channel:3 Clamp Type	Mini_1To6A_1A_0.1V	-	Mini_1To6A_1A_0.1V	4	24/01/2022 12:38:24.021	
7	Stage1	G4 System	Unit Clamps Types	Channel:4 Clamp Type	Mini_1To6A_1A_0.1V	-	Mini_1To6A_1A_0.1V	4	24/01/2022 12:38:24.138	
8	Stage1	DSP Module	Current Calibration	I_To_V_Direction_Read ch:1	5	1000000	1752.115845	4	24/01/2022 12:39:27.187	
9	Stage1	DSP Module	Current Calibration Low Range ch1	Calibration Value: 0.3	Pass	-	Pass	4	24/01/2022 12:41:48.272	
10	Stage1	DSP Module	Current Calibration Low Range ch1	I1_LowMult_Read	9	11	10.164402	4	24/01/2022 12:41:48.938	
11	Stage1	DSP Module	Current Calibration Low Range ch1	I1_Value_Read	0.2997	0.3003	0.300034	4	24/01/2022 12:41:49.085	
12	Stage1	DSP Module	Current Calibration	I_To_V_Direction_Read ch:2	5	1000000	1043.846191	4	24/01/2022 12:42:52.123	
13	Stage1	DSP Module	Current Calibration Low Range ch2	Calibration Value: 0.3	Pass	-	Pass	4	24/01/2022 12:45:14.230	
14	Stage1	DSP Module	Current Calibration Low Range ch2	I2_LowMult_Read	9	11	10.138845	4	24/01/2022 12:45:15.021	
15	Stage1	DSP Module	Current Calibration Low Range ch2	I2_Value_Read	0.2997	0.3003	0.299999	4	24/01/2022 12:45:15.129	
16	Stage1	DSP Module	Current Calibration	I_To_V_Direction_Read ch:3	5	1000000	104.155762	4	24/01/2022 12:46:18.182	
17	Stage1	DSP Module	Current Calibration Low Range ch3	Calibration Value: 0.3	Pass	-	Pass	4	24/01/2022 12:48:40.840	
18	Stage1	DSP Module	Current Calibration Low Range ch3	I3_LowMult_Read	9	11	10.148255	4	24/01/2022 12:48:41.570	
19	Stage1	DSP Module	Current Calibration Low Range ch3	I3_Value_Read	0.2997	0.3003	0.299994	4	24/01/2022 12:48:41.681	
20	Stage1	DSP Module	Current Calibration	I_To_V_Direction_Read ch:N	5	1000000	68.939598	4	24/01/2022 12:49:44.756	
21	Stage1	DSP Module	Current Calibration Low Range ch4	Calibration Value: 0.3	Pass	-	Pass	4	24/01/2022 12:52:07.552	
22	Stage1	DSP Module	Current Calibration Low Range ch4	In_LowMult_Read	9	11	10.136033	4	24/01/2022 12:52:08.228	
23	Stage1	DSP Module	Current Calibration Low Range ch4	In_Value_Read	0.2997	0.3003	0.30004	4	24/01/2022 12:52:08.332	
24	Stage1	G4 System	Unit Clamps Types	Channel:1 Clamp Type	Mini_1To6A_1A_0.1V	-	Mini_1To6A_1A_0.1V	4	24/01/2022 12:52:10.254	
25	Stage1	G4 System	Unit Clamps Types	Channel:2 Clamp Type	Mini_1To6A_1A_0.1V	-	Mini_1To6A_1A_0.1V	4	24/01/2022 12:52:10.363	
26	Stage1	G4 System	Unit Clamps Types	Channel:3 Clamp Type	Mini_1To6A_1A_0.1V	-	Mini_1To6A_1A_0.1V	4	24/01/2022 12:52:10.473	
27	Stage1	G4 System	Unit Clamps Types	Channel:4 Clamp Type	Mini_1To6A_1A_0.1V	-	Mini_1To6A_1A_0.1V	4	24/01/2022 12:52:10.583	
28	Stage1	DSP Module	Current Calibration	I_To_V_Direction_Read ch:1	5	1000000	680.33374	4	24/01/2022 12:53:13.576	
29	Stage1	DSP Module	Current Calibration High Range ch1	Calibration Value: 3	Pass	-	Pass	4	24/01/2022 12:55:41.111	

Page 1 of 2

PÁGINA 76 DE 78

30	Stage1	DSP Module	Current Calibration High Range ch1	l1_HighMult_Read	90	110	101.354347	4	24/01/2022 12:55:41.800
31	Stage1	DSP Module	Current Calibration High Range ch1	I1_Value_Read	2.97	3.03	3.000008	4	24/01/2022 12:55:41.917
32	Stage1	DSP Module	Current Calibration	I_To_V_Direction_Read ch:2	5	1000000	689.693542	4	24/01/2022 12:56:44.928
33	Stage1	DSP Module	Current Calibration High Range ch2	Calibration Value: 3	Pass	-	Pass	4	24/01/2022 12:59:07.698
34	Stage1	DSP Module	Current Calibration High Range ch2	I2_HighMult_Read	90	110	101.134651	4	24/01/2022 12:59:08.480
35	Stage1	DSP Module	Current Calibration High Range ch2	I2_Value_Read	2.97	3.03	2.999982	4	24/01/2022 12:59:08.596
36	Stage1	DSP Module	Current Calibration	I_To_V_Direction_Read ch:3	5	1000000	689.487183	4	24/01/2022 13:00:11.667
37	Stage1	DSP Module	Current Calibration High Range ch3	Calibration Value: 3	Pass	-	Pass	4	24/01/2022 13:02:35.963
38	Stage1	DSP Module	Current Calibration High Range ch3	I3_HighMult_Read	90	110	101.230629	4	24/01/2022 13:02:36.587
39	Stage1	DSP Module	Current Calibration High Range ch3	I3_Value_Read	2.97	3.03	2.999994	4	24/01/2022 13:02:36.714
40	Stage1	DSP Module	Current Calibration	I_To_V_Direction_Read ch:N	5	1000000	689.660522	4	24/01/2022 13:03:39.691
41	Stage1	DSP Module	Current Calibration High Range ch4	Calibration Value: 3	Pass		Pass	4	24/01/2022 13:06:03.334
42	Stage1	DSP Module	Current Calibration High Range ch4	In_HighMult_Read	90	110	101.050255	4	24/01/2022 13:06:04.030
43	Stage1	DSP Module	Current Calibration High Range ch4	In_Value_Read	2.97	3.03	3.000028	4	24/01/2022 13:06:04.145
44									24/01/2022 13:06:04.506
45	Stage1	DSP Module	Test Total Time	-	-	-	00:27:55	-	24/01/2022 13:06:05.049
46									24/01/2022 13:06:05.155
47				Log In	Pass	-	Pass	4	24/01/2022 13:09:12.959
48				Log In	Pass	-	Pass	4	24/01/2022 13:56:33.717
49				Log In	Pass	-	Pass	4	24/01/2022 14:07:33.515
50									24/01/2022 14:25:54.158
51	Stage1	All Modules	Test Total Time	-	-	-	01:48:24	-	24/01/2022 14:25:54.621
52									24/01/2022 14:25:54.713
	G4K Calibration Pass		1K Calibration Pass		Doron Arussi Signatura Dispect technologies				

Page 2 of 2

ANEXO VI ARCHIVOS ADJUNTOS

Anexo a este informe se encuentran los siguientes archivos adjuntos:

- ANEXO 1 Potencia activa, reactiva y corriente 52J1 52F1 y 52F17 SE Inca de Oro (Descarga).xlsx: contiene las
 mediciones de potencia activa y reactiva en el paño 52J1, potencia activa y corriente en los paños 52F1 y 52F17 de
 la SE Inca de Oro para la prueba de mínimo técnico (Descarga).
- ANEXO 2 SS.AA. Potencia activa y corriente (Descarga).xlsx: contiene las mediciones de potencia activa y corriente en los servicios auxiliares (400V) del proyecto BESS DAS para la prueba de mínimo técnico (Descarga).
- ANEXO 3 Potencia activa, reactiva y corriente 52J1 52F1 y 52F17 SE Inca de Oro (Carga).xlsx: contiene las mediciones de potencia activa y reactiva en el paño 52J1, potencia activa y corriente en los paños 52F1 y 52F17 de la SE Inca de Oro para la prueba de mínimo técnico (Carga).
- ANEXO 4 SS.AA. Potencia activa y corriente (Carga).xlsx: contiene las mediciones de potencia activa y corriente en los servicios auxiliares (400V) del proyecto BESS DAS para la prueba de mínimo técnico (Carga).
- ANEXO 5 Potencia activa, reactiva y corriente 52J1 52F1 y 52F17 SE Inca de Oro (CT Descarga).xlsx: contiene las mediciones de potencia activa y reactiva en el paño 52J1, potencia activa y corriente en los paños 52F1 y 52F17 de la SE Inca de Oro para la prueba de mínimo técnico ciclo de trabajo (Descarga).
- ANEXO 6 SS.AA. Potencia activa y corriente (CT Descarga).xlsx: contiene las mediciones de potencia activa y
 corriente en los servicios auxiliares (400V) del proyecto BESS DAS para la prueba de mínimo técnico ciclo de trabajo
 (Descarga).
- ANEXO 7 Potencia activa, reactiva y corriente 52J1 52F1 y 52F17 SE Inca de Oro (CT Carga).xlsx: contiene las mediciones de potencia activa y reactiva en el paño 52J1, potencia activa y corriente en los paños 52F1 y 52F17 de okala SE Inca de Oro para la prueba de mínimo técnico ciclo de trabajo (Carga).
- ANEXO 8 SS.AA. Potencia activa y corriente (CT Carga).xlsx: contiene las mediciones de potencia activa y corriente en los servicios auxiliares (400V) del proyecto BESS DAS para la prueba de mínimo técnico ciclo de trabajo (Carga).