

12.05.2023

Informe de Determinación de Mínimos Técnicos en Unidades Generadoras 22003-00-ES-IT-013 Rev. B Preparado para Enel Green Power Chile S.A

P22003 ESTUDIOS PROYECTO GUANCHOI

Informe de Determinación de Mínimos Técnicos en Unidades Generadoras

I-SEP Ingenieros SpA.

Ingeniería en Sistemas Eléctricos de Potencia

Padre Mariano 82 Oficina 603 Providencia, Santiago Chile

+56 2 2604 8761

www.i-sep.cl empresa@i-sep.cl

REV.	PREPARADO POR	FECHA	REVISADO POR	FECHA	COMENTARIOS
Rev. A	Bastian Guerra Deramond	11.05.2023	Cristóbal Valenzuela Esteban Canales	12.05.2023	Emitido para su revisión interna
Rev. B	Bastian Guerra Deramond	12.05.2023			Emitido para revisión cliente

CONTENIDOS

1.	IDENTIFI	CACIÓN	. 4
2.	OBJETIV	OS Y ALCANCE	. 4
3.	INTROD	UCCIÓN	. 4
4.	REFEREN	ICIAS TÉCNICAS	. 5
4.1.		NTOS	
4.2.	NORMAS	Y ESTÁNDARES	. 5
5.	DESCRIP	CIÓN TÉCNICA DEL PARQUE	. 6
5.1.	DESCRIPC	IÓN TÉCNICA DEL PARQUE FOTOVOLTÁICO GUANCHOI	. 8
	5.1.1. T	RANSFORMADOR 33/33/220 KV N°1	. 8
		RANSFORMADOR 33/33/220 KV N°2	
		/IODELADO RED INTERNA	
	5.1.4. N	/IODELACIÓN UNIDAD GENERADORA	16
	5.1.5. T	RANSFORMADORES ZIG-ZAG	18
	5.1.6. T	RANSFORMADORES AUXILIARES	18
6.	REVISIÓ	N NORMATIVA	19
7.	DETERM	IINACIÓN MÍNIMO TÉCNICO	20
7.1.	DEFINICIÓ	N DE PUNTOS DE MEDICIÓN	20
7.2.	ANTECEDI	ENTES DE OPERACIÓN	20
7.3.	CÁLCULO	DE MÍNIMO TÉCNICO DEL PARQUE	24
8.	CONCLU	SIONES	25
ANE	XO I	Registro SSAA	
ANE	XO II	Registro de Potencia	
	XO III	Base de Datos	
ANE	XO IV	Datasheet del Inversor	
ANE	xo v	Datasheet Celdas Fotovoltaicas	
ANE	XO VI	Registros de Irradiancia y Temperatura Ambiente	

1. IDENTIFICACIÓN

♦ Nombre del Proyecto : Parque Fotovoltaico Guanchoi

Numero Único de Proyecto (NUP) : 1235

• Empresa Propietaria del Proyecto : Enel Green Power Chile S.A

2. OBJETIVOS Y ALCANCE

El presente informe tiene por finalidad establecer el mínimo técnico para los inversores del Parque Fotovoltaico Guanchoi, en adelante PFV Guanchoi, NUP 1235, propiedad de Enel Green Power Chile S.A, según lo establecido por la Norma Técnica de Seguridad y Calidad de Servicio, y en el **Anexo Técnico: Mínimo Técnico**.

3. INTRODUCCIÓN

El proyecto Guanchoi consiste en un parque fotovoltaico que se ubica en la comuna de Inca de Oro, Región de Atacama, Chile. Contempla un total de 2325 inversores HUAWEI SUN 2000 185KTL H1 de 180 W, lo que otorga una potencia total instalada de 397,61 MWp mientras que en el punto de conexión se estima una inyección de 369,9 MW y una máxima generación de 392,41 MW¹, solo bajo condiciones favorables de radiación solar y temperatura ambiente. La energía inyectada por el parque es evacuada a través de circuitos de 33 kV que se conectan a las instalaciones de transformación de 33/220 kV ubicadas en la S/E Bella Mónica, la cual está conectada al Sistema Eléctrico Nacional (SEN), a través de la línea de transmisión 1x220 kV Illapa – Bella Mónica. En este contexto, I-SEP se ha adjudicado el desarrollo del informe de mínimo técnico (MinTec), requerido por el Coordinador Eléctrico Nacional para la entrada en operación del proyecto PFV Guanchoi, el cual tiene por objetivo determinar el mínimo técnico global que puede generar el parque.

_

¹ Valor extraído desde la estadística de potencia y energía generable mensual con prob. de excedencia de 20%, correspondiente al mes de noviembre, a las 9 hrs. Dicho documento se ha cargado en la información técnica del proyecto con el nombre de "Potencia y energía generable mensual con prob. de excedencia 20%, 50% y 80%.xlsx".

4. REFERENCIAS TÉCNICAS

El presente informe ha sido desarrollado con los siguientes antecedentes, los cuales se encuentran en la carpeta Anexos adjunta a este informe:

4.1. **DOCUMENTOS**

- a) Documento "ANEXO II Registro de Potencia.xlsx", provisto por el cliente, que registra las mediciones obtenidas en las pruebas del día 14/10/2022.
- b) Documento 22003-00-ES-IT-003 Rev. 2.pdf. "Estudio de Flujo de Potencia" Parque Solar Guanchoi realizado por I-SEP.
- c) Documento "ANEXO I Registro SSAA.zip", obtenidas en terreno, que registra las mediciones obtenidas del medidor de servicios auxiliares de la subestación en las pruebas del día 03/05/2023.
- d) BD PowerFactory DIgSILENT "ANEXO III Base de Datos.pfd".

4.2. NORMAS Y ESTÁNDARES

- I. Norma Técnica de Seguridad y Calidad de Servicio, versión septiembre 2020.
- II. Anexo Técnico "Mínimo Técnico"

5. DESCRIPCIÓN TÉCNICA DEL PARQUE

En la Figura 5-1 se muestra un diagrama unilineal de la zona de influencia, destacando en un recuadro **rojo** el proyecto PFV Guanchoi. Por otro lado, la Figura 5-2 muestra el diagrama unilineal del sistema colector del PFV Guanchoi.

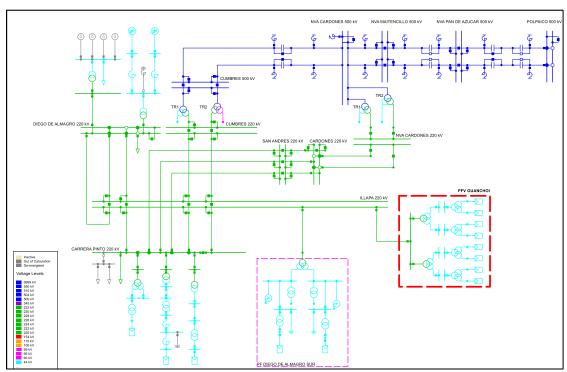


Figura 5-1 Diagrama unilineal de la zona de influencia en estudios $^{\rm 2}$.

_

² Imagen obtenida desde antecedente (a)

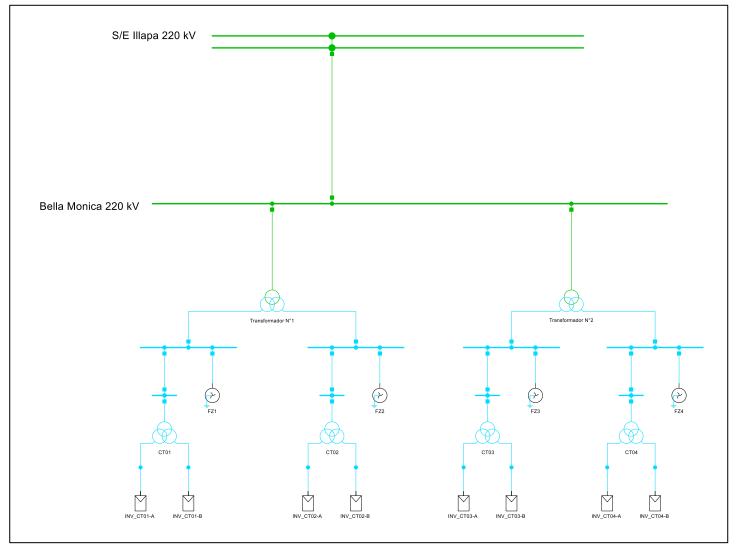


Figura 5-2 Diagrama unilineal sistema colector PFV Guanchoi.

5.1. DESCRIPCIÓN TÉCNICA DEL PARQUE FOTOVOLTÁICO GUANCHOI

A continuación, se exponen los aspectos más relevantes de las instalaciones del parque a efectos del presente estudio.

5.1.1. TRANSFORMADOR 33/33/220 KV N°1

A partir del antecedente b) se extraen los parámetros para realizar el modelado del transformador elevador 33/33/220 kV N°1.

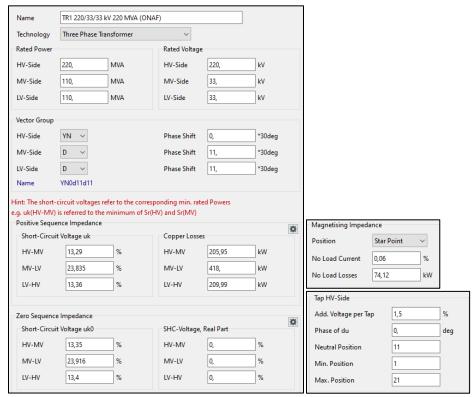


Figura 5-3 Modelado Transformador Elevador N°1.

5.1.2. TRANSFORMADOR 33/33/220 KV N°2

A partir del antecedente b) se extraen los parámetros para realizar el modelado del transformador elevador 33/33/220 kV N°2.

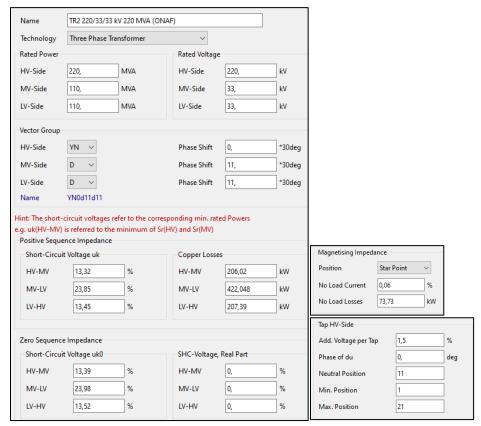


Figura 5-4 Modelado Transformador Elevador N°2.

5.1.3. MODELADO RED INTERNA

En base a la información recopilada en el antecedente b) en la Tabla 5-1 y Tabla 5-2 se indican los cables de la red interna y longitudes correspondientes a los mismos. En base a la información obtenida del antecedente b) se modelan los cables de la red interna en los apartados 5.1.3.1, 5.1.3.2 y 5.1.3.3.

		Tabia 5-1 Cables que derivan al Transformador elevador N. 1.							
		NOMBRE CABLE	TIPO DE CABLE	BARRA 1	BARRA 2	LONGITUD [km]			
	1	CU-36 a BP1	3x2x630mm2	BP1_Barra N°1 - 33 kV	CU-36	3,049			
	nea	CU-35 a CU-36	3x1x630mm2	CU-36	CU-35	0,363			
, 1°1	Ξ	CU-01 a CU-35	3x1x630mm2	CU-35	CU-01	3,397			
TR.	2	CU-04 a BP1	3x2x630mm2	CU-04	BP1_Barra N°1 - 33 kV	5,598			
Σ	nea	CU-03 a CU-04	3x1x630mm2	CU-03	CU-04	0,317			
00 1	Ë	CU-02 a CU-03	3x1x300mm2	CU-02	CU-03	0,317			
F	т	CU-09 a BP1	3x2x630mm2	CU-09	BP1_Barra N°1 - 33 kV	5,073			
	nea	CU-07 a CU-09	3x1x400mm2	CU-09	CU-07	0,596			
	Ë	CU-05 a CU-07	3x1x300mm2	CU-05	CU-07	0,596			

Tabla 5-1 Cables que derivan al Transformador elevador N°1

		NOMBRE CABLE	TIPO DE CABLE	BARRA 1	BARRA 2	LONGITUD [km]
	4	CU-10 a BP1	3x2x630mm2	CU-10	BP1_Barra N°1 - 33 kV	4,791
	Línea ,	CU-08 a CU-10	3x1x400mm2	CU-08	CU-10	0,596
	`=	CU-06 a CU-08	3x1x300mm2	CU-08	CU-06	0,596
	Línea 5	CU-15 a BP1	3x2x630mm2	CU-15	BP1_Barra N°1 - 33 kV	4,677
		CU-13 a CU-15	3x1x400mm2	CU-13	CU-15	0,596
		CU-11 a CU-13	3x1x300mm2	CU-11	CU-13	0,596
	9	CU-16 a BP1	3x2x630mm2	CU-16	BP1_Barra N°1 - 33 kV	4,395
	Línea (Cu-14 a CU-16	3x1x400mm2	CU-14	CU-16	0,596
	Línea 7 Lír	CU-12 a CU-14	3x1x300mm2	CU-12	CU-14	0,596
	7	CU-21 a BP2	3x2x630mm2	CU-21	BP2_Barra N°2 - 33 kV	4,264
	nea	CU-19 a CU-21	3x1x400mm2	CU-21	CU-19	0,596
	Ė	CU-17 a CU-19	3x1x300mm2	CU-19	CU-17	0,596
	Línea 8	CU-22 a BP2	3x2x630mm2	CU-22	BP2_Barra N°2 - 33 kV	3,982
		CU-20 a CU-22	3x1x400mm2	CU-20	CU-22	0,596
		CU-18 a CU-20	3x1x300mm2	CU-18	CU-20	0,596
_	6	CU-27 a BP2	3x2x630mm2	CU-27	BP2_Barra N°2 - 33 kV	3,868
S S	Línea	CU-25 a CU-27	3x1x400mm2	CU-27	CU-25	0,596
2 MTTR N°1	Ë	CU-23 a CU-25	3x1x300mm2	CU-23	CU-25	0,596
2 2	9	CU-28 a BP2	3x2x630mm2	CU-28	BP2_Barra N°2 - 33 kV	3,586
LADO	Línea 10	CU-26 a CU-28	3x1x400mm2	CU-26	CU-28	0,596
_	늘	CU-24 a CU-26	3x1x300mm2	CU-26	CU-24	0,596
	11	CU-33 a BP2	3x2x630mm2	CU-33	BP2_Barra N°2 - 33 kV	3,46
	Línea 1	CU-31 a CU-33	3x1x400mm2	CU-31	CU-33	0,596
	늘	CU-29 a CU-31	3x1x300mm2	CU-29	CU-31	0,596
	12	CU-34 a BP2	3x2x630mm2	CU-34	BP2_Barra N°2 - 33 kV	3,178
	Línea 1	CU-32 a CU-34	3x1x400mm2	CU-32	CU-34	0,596
	Ë	CU-30 a CU-32	3x1x300mm2	CU-30	CU-32	0,596

Tabla 5-2 Cables que derivan al Transformador elevador N°2.

		NOMBRE CABLE	TIPO DE CABLE	BARRA 1	BARRA 2	LONGITUD [km]
	13	CU-63 a BP3	3x2x630mm2	CU-63	BP3_Barra N°3- 33 kV	3,011
	nea .	CU-62 a CU-63	3x1x400mm2	CU-63	CU-62	0,317
	Ė	CU-61 a CU-62	3x1x300mm2	CU-62	CU-61	0,317
2	Línea 14	CU-64 a BP3	3x2x630mm2	CU-64	BP3_Barra N°3- 33 kV	3,855
, Z		CU-65 a CU-64	3x1x400mm2	CU-65	CU-64	0,317
1T TI		CU-60 a CU-65	3x1x300mm2	CU-60	CU-65	0,788
7	15	CU-54 a BP3	3x2x630mm2	CU-54	BP3_Barra N°3- 33 kV	2,1
ADC	eau	CU-56 a CU-54	3x1x400mm2	CU-54	CU-56	0,596
_	Ė	CU-58 a CU-56	3x1x300mm2	CU-58	CU-56	0,596
	16	CU-55 a BP3	3x2x630mm2	CU-55	BP3_Barra N°3- 33 kV	2,382
	ea .	CU-55 a CU-57	3x1x400mm2	CU-57	CU-55	0,596
	Ė	CU-59 a CU-57	3x1x300mm2	CU-57	CU-59	0,596

		NOMBRE CABLE	TIPO DE CABLE	BARRA 1	BARRA 2	LONGITUD [km]
	17	CU-48 a BP3	3x2x630mm2	CU-48	BP3_Barra N°3- 33 kV	1,92
	Línea :	CU-50 a CU-48	3x1x400mm2	CU-50	CU-48	0,596
	<u></u> 늘 [CU-52 a CU-50	3x1x300mm2	CU-52	CU-50	0,596
	18	CU-49 a BP4	3x2x630mm2	CU-49	BP4_Barra N°4 - 33 kV	2,202
	Línea :	CU-49 a CU-51	3x1x400mm2	CU-49	CU-51	0,596
	Ľ	CU-51 a CU-53	3x1x300mm2	CU-51	CU-53	0,596
	19	CU-42 a BP4	3x2x630mm2	CU-42	BP4_Barra N°4 - 33 kV	2,361
2	Línea :	CU-44 a CU-42	3x1x400mm2	CU-44	CU-42	0,596
TR N°2		CU-46 a CU-44	3x1x300mm2	CU-46	CU-44	0,596
1T T	20	CU-43 a BP4	3x2x630mm2	CU-43	BP4_Barra N°4 - 33 kV	2,643
. 2 MT	Línea .	CU-45 a CU-43	3x1x400mm2	CU-43	CU-45	0,596
LADO	ょ	CU-47 a CU-45	3x1x300mm2	CU-47	CU-45	0,596
	21	CU-37 a BP4	3x2x630mm2	CU-37	BP4_Barra N°4 - 33 kV	2,743
	Línea .	CU-38 a CU-37	3x1x400mm2	CU-38	CU-37	0,317
	5	CU-39 a CU-38	3x1x300mm2	CU-38	CU-39	0,317
	Líne a 22	CU-40 a BP4	3x2x630mm2	CU-40	BP4_Barra N°4 - 33 kV	3,587
	ÿ Ė	CU-41 a CU-40	3x1x300mm2	CU-41	CU-40	0,317

5.1.3.1. Cable 300 mm²

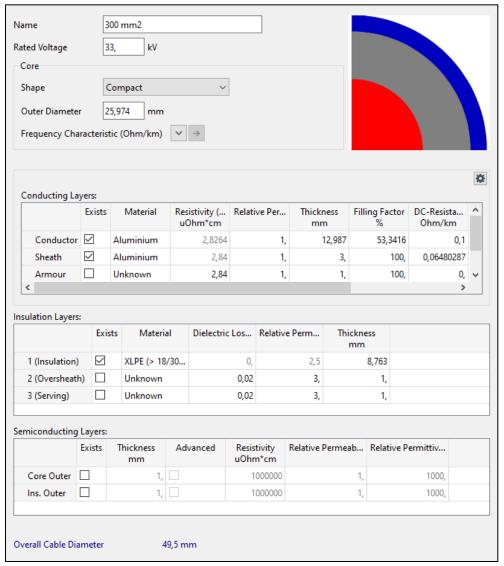


Figura 5-5 Modelado Cable 300 mm².

5.1.3.2. Cable 400 mm²

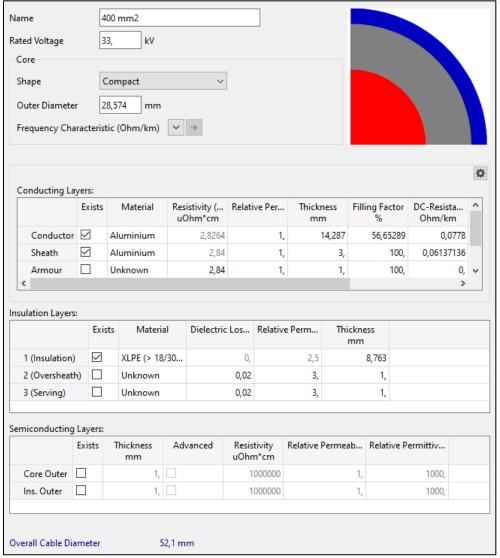


Figura 5-6 Cable 400mm².

5.1.3.3. Cable 630 mm²

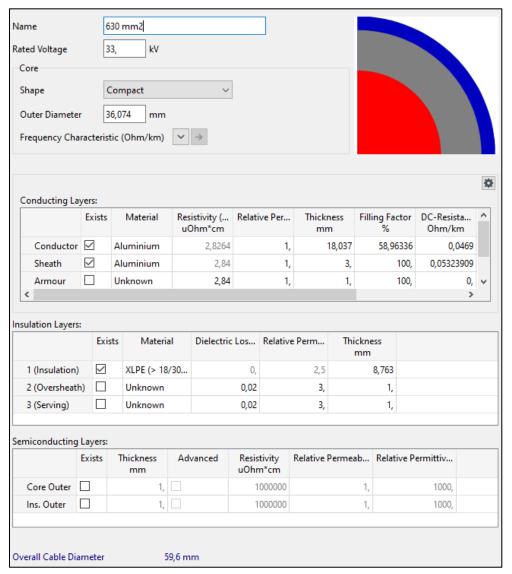


Figura 5-7 Cable 630mm².

5.1.3.4. Modelación Distribución de Cables en Zanja

A continuación, se detalla el modelado de la distribución de cables en zanja, antecedente b). Cabe destacar que para el modelado del sistema de cables se utiliza la misma resistividad que para la línea de transmisión 1x220 kV Bella Mónica – Illapa, 525,75 [Ω -m], antecedente b).

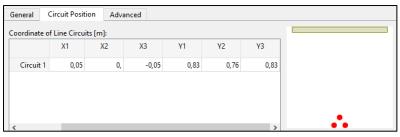


Figura 5-8 Zanja Cables tipo 3x1.

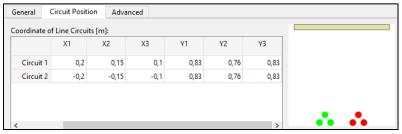


Figura 5-9 Zanja Cables tipo 3x2.

5.1.3.5. Transformador de bloque

En la siguiente figura se muestran las características de los transformadores de bloque de MT/BT del parque fotovoltaico Guanchoi. La información para modelar dicho transformador se extrae del antecedente b).

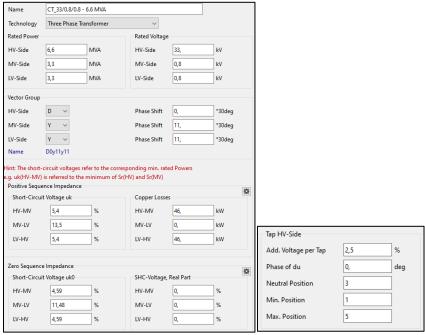


Figura 5-10 Transformador de Bloque 33/0,8/0,8 kV 6,6 MVA.

5.1.4. MODELACIÓN UNIDAD GENERADORA

En función de la información obtenida del antecedente b) se modelan las unidades generadoras y su diagrama PQ, en la Figura 5-11 y Figura 5-12 se presenta el modelado de dicha unidad en PowerFactory.

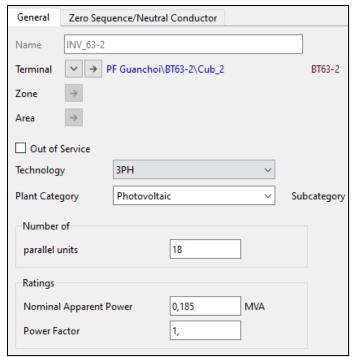


Figura 5-11 Unidad Generadora.

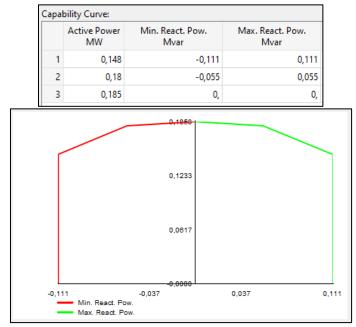


Figura 5-12 Curva PQ.

En la Figura 5-13 y Figura 5-14 se muestran las curvas características las celdas fotovoltaicas RSM144-7-435BMDG y RSM144-7-455BMDG. Además, en la Tabla 5-3 se muestran las principales características de estas celdas fotovoltaicas.

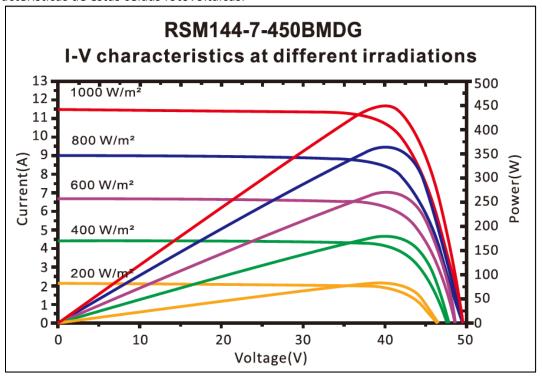


Figura 5-13 Curva características de las celdas fotovoltaicas a diferente irradiación.

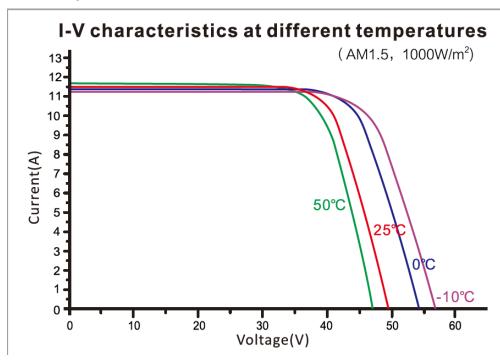


Figura 5-14 Curva características de las celdas fotovoltaicas a diferentes temperaturas.

Tabla 5-3 Características principales módulos fotovoltaicos del PFV Guanchoi.

NUMERO DE MODELO	RSM144-7-435BMDG	RSM144-7-455BMDG
Potencia Nominal (Wp)	435	455
Tensión de circuito abierto-Voc (V)	49,40	49,80
Corriente de cortocircuito-Isc (A)	11,20	11,60
Voltaje máxima potencia-Vmpp (V)	41,05	41,40
Corriente máxima potencia-Impp (V)	10,60	11,00
Eficiencia del módulo (%)	19,5	20,4

5.1.5. TRANSFORMADORES ZIG-ZAG

El PF Guanchoi proyecta cuatro transformadores zig-zag con puesta a tierra conectado a cada una de las barras de 33 kV de la subestación. Las características principales de los transformadores se indican en la siguiente tabla.

Tabla 5-4 Parámetros transformador zig-zag.

PARÁMETROS	VALOR
Tensión nominal	33 [kV]
Capacidad de corriente de cortocircuito (3·I0)	860 [A]
Impedancia de secuencia cero TZ1	59,988 [Ω/fase]
Impedancia de secuencia cero TZ2	59,752 [Ω/fase]
Impedancia de secuencia cero TZ3	60,018 [Ω/fase]
Impedancia de secuencia cero TZ4	59,622 [Ω/fase]

5.1.6. TRANSFORMADORES AUXILIARES

En la siguiente figura se presenta el modelado del transformador de servicios auxiliares. Cabe destacar que el PF Guanchoi cuenta con dos transformadores auxiliares, conectados a las barras N°2 y N°3.

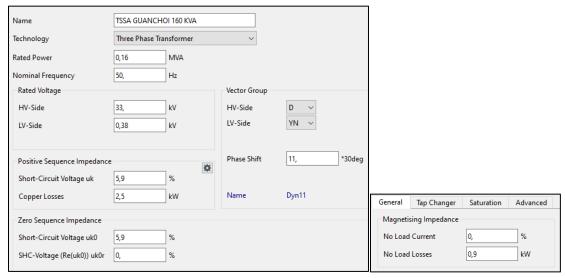


Figura 5-15 Transformador de Servicios Auxiliares.

6. REVISIÓN NORMATIVA

A continuación, se exponen los principales estándares normativos (Anexo Técnico: Mínimos Técnicos) que son de relevancia para el presente estudio.

Artículo 9: Informe Técnico.

El informe Técnico que respalda el valor Mínimo Técnico o informe de Mínimo Técnico consistirá en un documento que describa los registros de operación, supuestos, metodologías, alcances de la aplicación de estas metodologías, y conclusiones bajo los cuales se estableció el valor de Mínimo Técnico informado.

- a) Antecedentes técnicos de diseño.
- b) Recomendaciones del fabricante y antecedentes nacionales o internacionales de unidades de similares características.
- c) Antecedentes de operación de la unidad generadora, incluyendo los registros y descripción de los análisis y pruebas efectuadas.
- d) Justificaciones que describan las eventuales fuentes de inestabilidad en la operación de la unidad generadora, que impidan que la unidad pueda operar en un valor menor de potencia activa.
- e) Antecedentes técnicos que respalden y expliquen el comportamiento esperado o desempeño registrado.

Para el caso de unidades generadoras que puedan operar con combustible alternativo cuyo valor de Mínimo Técnico sea distinto al del combustible principal, deberán entregar los antecedentes requeridos en el presente Anexo para el combustible principal y el alternativo.

Una vez recibido el Informe Técnico, el Coordinador deberá verificar que dicho informe contiene todos los antecedentes especificados en el presente Artículo, para lo cual tendrá un plazo de 15 días hábiles.

Cuando el Coordinador determine que el Informe Técnico entregado por la Empresa Generadora contiene todos los antecedentes necesarios para su análisis, lo publicará en el sitio web del Coordinador y notificará a las empresas Coordinadas sobre el inicio del proceso de aprobación del Mínimo Técnico informado.

7. DETERMINACIÓN MÍNIMO TÉCNICO

7.1. DEFINICIÓN DE PUNTOS DE MEDICIÓN

A continuación, se describe un sistema equivalente que presenta un parque fotovoltaico conectado al Sistema Eléctrico Nacional (SEN), con el cual se puede definir lo siguiente:

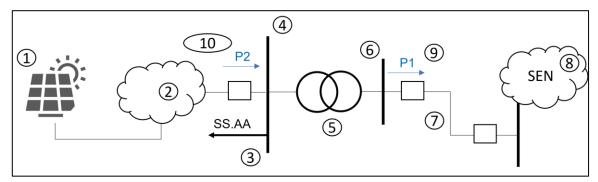


Figura 7-1 Diagrama de sistema equivalente.

Los componentes del parque son los siguientes:

- **1. Generador equivalente**: Corresponde a la suma de los aportes distribuidos de potencia activa en cada inversor del parque fotovoltaico.
- **2. Pérdidas en sistema colector del parque:** Corresponde a las pérdidas del sistema colector del parque fotovoltaico, principalmente en cables de baja y media tensión, y en los transformadores colectores que elevan de baja a media tensión.
- **3. Servicios Auxiliares (SSAA) de la central:** Corresponde a la potencia requerida por los servicios auxiliares de la SE.
- **4. Barra de media tensión (MT):** Correspondería a las barras 1, 2 3 y 4 de 33 kV del PFV Guanchoi, en la cual se conecta el lado de baja tensión de los transformadores de poder del parque.
- **5. Transformador de poder:** Equipo elevador presente en la subestación de salida del PFV Guanchoi corresponde a los transformadores de poder 1 y 2.
- **6. Barra de alta tensión: (AT):** Corresponde a la barra principal de 220 kV del PFV Guanchoi, en la cual se conecta el lado de alta tensión de los transformadores de poder del parque.
- **7.** Línea dedicada de la central: Línea de transmisión que vincula el parque con el sistema eléctrico.
- 8. Sistema Eléctrico Nacional (SEN).
- 9. P1: Potencia inyectada por el PFV Guanchoi en la barra de 220 kV de su subestación de salida.
- **10. P2:** Potencia inyectada por el PFV Guanchoi en las barras 1, 2 3 y 4 de 33 kV de su subestación de salida.

7.2. ANTECEDENTES DE OPERACIÓN

Para la determinación de la potencia mínima del PFV Guanchoi se han tomado los valores del equipo de medida del PPC (Power Plan controller) propio del parque. De los resultados presentados en el antecedente a) se puede obtener que la potencia en el punto de conexión durante el período

comprendido entre las 13:19:00 y las 13:29:59 del día 03-05-2023 es de **0,28 MW** (**P1**). En la siguiente Figura se presentan las mediciones realizadas durante el periodo anteriormente mencionado.

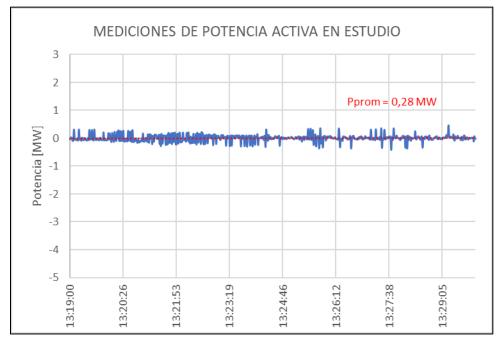


Figura 7-2 Mediciones de potencia activa realizadas el día 14-10-2022.

Por otra parte, se tiene que, los consumos de servicios auxiliares son de 0,01197 MW, valor que se puede corroborar en la siguiente figura.

Figura 7-3: Medición de las pérdidas de servicios auxiliares.

A continuación, se realizan simulaciones de flujo de potencia en la base de datos del antecedente (d), pero reemplazando el SEN por una red equivalente, y tomando en consideración el valor de potencia promedio obtenido en el punto de conexión del parque. Para ello, se replica esta potencia ajustando la potencia inyectada por los inversores del parque fotovoltaico, dando un total de 0,0002006 MW brutos por inversor. Así, se obtienen las pérdidas de la red, que corresponden a la suma de las pérdidas del sistema colector y las pérdidas del transformador de poder de la central, las cuales equivalen a 0,18 MW, como se muestra en la siguiente figura.

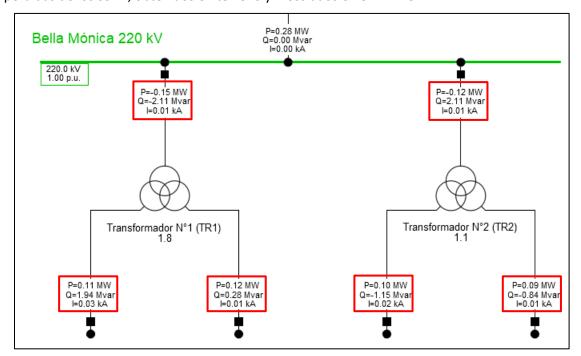

Load Flow Calculatio	n										Grid Su	ummary
AC Load Flow, ba Automatic tap ad Consider reactiv	justm	ent of tra				Max. Accept	tions(HV)		Convergence		No 1.00 0.10	kVA
Grid: PFV Guanchoi		System St	tage:	PFV Guanchoi	Stud	y Case: Stud			Annex:			/ 1
Grid: PFV Guanchoi		Summary										
No. of Substations	0	No	o. of	Busbars	72	No. of T	erminals	138	No. of	Lines		65
No. of 2-w Trfs.	2	No	o. of	3-w Trfs.	67	No. of s	yn. Machines	. 0	No. of	asyn. I	Machines	0
No. of Loads	1	No	o. of	Shunts/Filters	0	No. of S	VS	0		-		
Generation	=	0.47	MW	-20.80	Mvar	20.80	MVA					
External Infeed	=	-0.28	MW	-0.00	Mvar	0.28	MVA					
Inter Grid Flow	=	0.00	MW	0.00	Mvar							
Load P(U)	=	0.01	MW	-0.00	Mvar	0.01	MVA					
Load P(Un)	=	0.01		0.00	Mvar	0.01	MVA					
Load P(Un-U)	=	0.00	MW	0.00	Mvar							
Motor Load	=	0.00	MW	0.00	Mvar	0.00	MVA					
Grid Losses	=	0.18	MW	-20.80	Mvar							
Line Charging	=			-21.06								
Compensation ind.	=			0.00								
Compensation cap.	=			0.00	Mvar							
Installed Capacity	=	430.13	MW									
Spinning Reserve	=	0.00	MW									
Total Power Factor:												
Generation	=	0.0	2 Γ-	1								
Load/Motor		1.00 / 0.00										

Figura 7-4 Resultados del flujo de potencia.

Estas pérdidas se pueden desglosar entre las pérdidas de los transformadores y las pérdidas de sistema colector. De la siguiente imagen se desprenden las pérdidas de los transformadores, restando la potencia de salida con la de entrada de ambos devanados.

Figura 7-5 Valores de flujos de potencia de los transformadores de poder del PFV Guanchoi.

Así, ambos Transformadores tienen unas pérdidas de 0,15 MW, por lo que las pérdidas del sistema colector equivalen a 0,03 MW. Finalmente se debe considera un promedio de 0,01197 MW de las pérdidas de los SSAA, obtenidos en terreno y mostrados en el ANEXO I.

7.3. CÁLCULO DE MÍNIMO TÉCNICO DEL PARQUE

Con las potencias obtenidas, se procede a calcular la potencia mínima neta del parque. Se destaca que la potencia neta del PFV Guanchoi es registrada en el punto de conexión **P1**, definido en la sección 7.1 del presente informe.

Se define, por lo tanto, que el mínimo técnico es igual a:

$$MinTec = P_1 + P_{trafo} + P_{sist.\ colector} + P_{SS.AA}$$

En donde:

 P_1 es la potencia definida en la sección 7.1 y corresponde a la potencia mínima neta del parque, con un valor de **0,28 MW**.

 P_{trafo} Corresponden a las pérdidas de los transformadores de poder **0,15 MW**.

 $P_{sist.\ colector}$ corresponden a las pérdidas del sistema colector **0,03 MW**.

 $P_{SS.AA}$ corresponde a la potencia consumida por los servicios auxiliares de la subestación, correspondiente a **0,01197 MW**.

Así, se tiene que el mínimo técnico del parque es igual a:

Tabla 7-1 Resumen de mínimo técnico neto y consumos del PFV Guanchoi.

CENTRAL	MÍNIMO TÉCNICO BRUTO [MW]	MÍNIMO TÉCNICO NETO [MW]	PÉRDIDAS TRANSFORMADORES DE PODER [MW]	PÉRDIDAS SISTEMA COLECTOR [MW]	CONSUMOS SSAA [KW]					
PFV Guanchoi	0,47	0,28	0,15	0,03	0,01197					
Potencia mínima bruta = Potencia mínima neta + Pérdidas de la red (Transformador de poder + Sistema colector) + consumos de SSAA.										

Cabe destacar que los resultados presentados en la Tabla 7-1 son obtenidos directamente de los registros realizados en terreno, por lo que estos no se encuentran corregidos por radiación o temperatura, dado que esto último altera la naturaleza del ensayo de Mínimo Técnico, el cual consiste en evaluar la potencia activa bruta mínima con la cual una unidad puede operar en forma permanente, segura y estable inyectando energía al SI en forma continua. La comprobación de esto último es mediante la operación real de las unidades generadoras (según es señalado en el Artículo 6 del Anexo Técnico: Determinación de Mínimos Técnicos en Unidades Generadoras de la NTSyCS).

8. CONCLUSIONES

En el presente informe se obtienen los parámetros de potencia mínima neta y bruta para el PFV Guanchoi de acuerdo con las indicaciones del fabricante, así como la potencia registrada en el punto de conexión del parque, considerando el consumo de servicios auxiliares, las pérdidas del sistema colector y las pérdidas de los transformadores de poder.

De acuerdo con lo expuesto en el presente informe, se concluye que el parámetro de mínimo técnico neto del PFV Guanchoi es de **0,28 [MW]**, mientras que el mínimo técnico bruto del parque es de **0,47 [MW]**.

ANEXOS

P22003 ESTUDIOS PROYECTO GUANCHOI 12.05.2023

Anexo de Determinación de Mínimos Técnicos 22003-00-ES-IT-013 Rev. B Preparado para Enel Green Power Chile S.A.

ANEXO I

P22003

REGISTRO DE SSAA

El Anexo I se encuentra adjunto en la carpeta "ANEXO I Registro de SSAA" con el nombre: "Registro SSAA.JPEG".

ANEXO II

P22003

REGISTRO DE POTENCIA MEDIDA

El Anexo II se encuentra adjunto en la carpeta de envío con el nombre: "ANEXO II Registro de Potencia.xlsx".

ANEXO III

P22003

BASE DE DATOS

El Anexo III se encuentra adjunto en la carpeta de envío con el nombre: "ANEXO III Base de Datos.pfd".

ANEXO IV

P22003

DATASHEET DEL INVERSOR

El Anexo IV se encuentra adjunto en la carpeta "ANEXO IV Datasheet Del Inversor" con el nombre: "GRE.EEC.R.99.CL.P.07575.12.085.01.pdf".

ANEXO V

P22003

DATASHEET CELDAS FOTOVOLTAICAS

El Anexo V se encuentra adjunto en la carpeta "ANEXO V Datasheet Celdas Fotovoltaicas" con el nombre: "Datos del fabricante del equipamiento.pdf".

ANEXO VI

P22003

REGISTROS DE IRRADIANCIA Y TEMPERATURA AMBIENTE

El Anexo VI se encuentra adjunto en la carpeta "Anexo VI Registros de Irradiancia y Temperatura Ambiente" con el nombre: "Datos Meteorológicos 2-5_3-5.csv".