

INFORME POTENCIA MÁXIMA - ERNC

PFV DIEGO DE ALMAGRO SUR

FECHA	REVISIÓN	COMENTARIOS	PREPARADO	REVISADO	APROBADO
30/03/2023	R3	Observación CEN posterior a aprobación del informe	José Espinoza José Araya	Sergio Aspee	Francisco Beltrán

REVISIÓN 3

SEGUIMIENTO DE DOCUMENTACIÓN

El presente informe de potencia máxima, asociado a la conexión del proyecto fotovoltaico Diego de Almagro Sur, registra la siguiente documentación:

DOCUMENTO	FECHA	REVISIÓN	COMENTARIOS	PREPARADO	REVISADO	APROBADO
Informe Potencia Máxima - PFV Diego de Almagro Sur REV_0	17-06-2022	0	Para entrega CEN	José Espinoza José Araya	Sergio Aspe	Francisco Beltrán
Informe Potencia Máxima - PFV Diego de Almagro Sur REV_1	20-07-2022	1	Correcciones ante observaciones del CEN en documento: "CEN-GO-DCO- PMAX- PFV Diego de Almagro Sur.pdf"	José Espinoza	Sergio Aspe	Francisco Beltrán
Informe Potencia Máxima - PFV Diego de Almagro Sur REV_2	06-12-2022	2	Observación CEN posterior a aprobación del informe	José Espinoza	Sergio Aspe	Francisco Beltrán
Informe Potencia Máxima - PFV Diego de Almagro Sur REV_3	30-03-2023	3	Observación CEN solicitando pérdidas de línea 1x220 kV Inca de Oro – Illapa, posterior a aprobación del informe	José Espinoza	Sergio Aspe	Francisco Beltrán

TABLA DE CONTENIDO

1		Introducción6					
2		Objetivos6					
3		Antec	edentes	7			
	3.	1 A	ntecedentes PFV Diego de Almagro Sur	7			
		3.1.1	Descripción del proyecto	7			
		3.1.2	Diagrama unilineal zona de interconexión del proyecto	9			
	3.	2 A	ntecedentes técnicos del PFV Diego de Almagro Sur	11			
		3.2.1	Transformadores de bloque BT / MT	13			
		3.2.2	Transformador de potencia S/E Inca de Oro	13			
		3.2.3	Línea Diego de Almagro Sur – Illapa 1x220kV	14			
		3.2.4	Red de media tensión en 33kV	15			
		3.2.5	Características generales de Inversores	20			
	3.	3 A	ntecedentes y Exigencias Normativas	25			
4		Deterr	ninación de Potencia Máxima Parque Fotovoltaico Diego de Almagro Sur	26			
	4.	1 P	rueba de Potencia Máxima	28			
	4.	2 D	eterminación de Potencia Máxima en condición de operación nominal	33			
5		Conclu	usiones	38			
6		Refere	encias	39			
A	NE	ΧΟ Ι	Datasheet y pruebas fábrica transformador de bloque BT/MT [5]	41			
A	NE	XO II	Placa de datos y ensayos de fábrica Transformador de poder	43			
A	NE	XO III	Datasheet Inversor y consumos auxiliares	45			
A	NE	XO IV	Datasheet de los paneles solares	49			
A	NE	xo v	Determinación de Potencia máxima del PFV Diego de Almagro sur mediante simulación	51			
A	NE	XO VI	Especificaciones instrumentos de medición	54			
A	NE	XO VII	Archivos adjuntos	58			

ÍNDICE DE FIGURAS

Figura 3.1: Ubicación geográfica referencial PFV Diego de Almagro Sur. Fuente: Google Earth	7
Figura 3.2: Mapa de ubicación del PFV Diego de Almagro Sur en el SEN	8
Figura 3.3: Diagrama unilineal zona de influencia sin proyecto	9
Figura 3.4: Diagrama unilineal zona de influencia con proyecto	10
Figura 3.5: Diagrama unilineal MT e inversores - PFV Diego de Almagro Sur	11
Figura 3.6: Diagrama unilineal simplificado SE Elevadora 220/33kV - PFV Diego de Almagro Sur	12
Figura 3.7: Configuración de alimentador con 4 inversores - PFV Diego de Almagro Sur	12
Figura 3.8: Silueta de torre de suspensión S220.1M h=20,4	14
Figura 3.9: Extracto placas transformadores Zig-Zag [8]	15
Figura 3.10: Extracto HCTG Resistencia de neutro de reactor [8]	16
Figura 3.11: Detalle cables red media tensión 33kV	17
Figura 3.12: Diagrama unilineal de alimentadores y centros de transformación PFV Diego de Almagro Sur	18
Figura 3.13: Fotos de placa banco de condensadores	19
Figura 3.14: Características centro de transformación MVPS 4600-S2 (Fuente: Fabricante SMA [5])	21
Figura 3.15: Curvas de capacidad de potencia activa y reactiva 25°C y tensión de red U≥Un – Inversores SMA	SC
4600-UP . (Fuente: Datasheet fabricante [6])	22
Figura 3.16: Curvas de capacidad de potencia activa y reactiva 25°C y tensión de red U=0,9Un – Inversores SM	٨N
SC 4600-UP . (Fuente: Datasheet fabricante [6])	22
Figura 3.17: Consumo de servicios auxiliares en un día soleado [5]	23
Figura 3.18: Consumo de servicios auxiliares en un día nublado [5]	24
Figura 4.1: Potencia activa paño 52J1 SE Inca de Oro, 7 de junio 2022	28
Figura 4.2: Potencia activa <i>incomings</i> 33kV SE Inca de Oro, 7 de junio 2022	29
Figura 4.3: Temperatura panel registrada en CT 12, 7 de junio 2022	29
Figura 4.4: Irradiancia registrada en CT 12, 7 de junio 2022	30
Figura 4.5: Registro de potencia activa en lado AT y MT del transformador de poder, tiempo acotado 7 de jur	nio
2022	31
Figura 4.6: Potencia activa SS.AA. SE Inca de Oro, 7 de junio 2022	31
Figura 4.7: Resumen de resultados en simulación BD Power Factory DigSilent	32
Figura 4.8: Registro de irradiancia PFV Diego de Almagro Sur - Solargis_TS60	34
Figura 4.9: Irradiancia versus potencia activa registrada en PFV Diego de Almagro Sur	35
Figura 4.10: Simulación de condición potencia máxima condición de operación STC	36
Figura 4.11: Resumen de resultados en simulación BD Power Factory DigSilent condición de operación STC	36
Figura 6.1: Placa de datos Centro de trasnformación tipo MVPS-4600 S2- PFV Diego de Almagro Sur	47
Figura 6.2: Consumo de servicios auxiliares en un día soleado [5]	48
Figura 6.3: Consumo de servicios auxiliares en un día noublado [5]	48
Figura 6.4: Comparación de la Radiación solar global en plano horizontal en el emplazamiento del PFV Diego	de
Almagro Sur	52
Figura 6.5: Resultado de simulación de la potencia total de salida de los inversores en la PFV Diego de Almag	ro
Sur con la base de datos SOLARGIS	52
Figura 6.6: Resultado de simulación de la potencia total de salida de los inversores en la PFV Diego de Almag	ro
Sur con la base de datos del Explorador Solar del Ministerio de Energía de Chile	53

Figura 6.7: Resultado de simulación de la potencia total de salida de los inversores en la PFV Diego	de Almagro
Sur con la base de datos Meteonorm	53
Figura 6.8: Datasheet instrumento de medida PURE BlackBox marca Elspec [3]	54
Figura 6.9: Datasheet instrumento de medida G4500 marca Elspec [4]	55

ÍNDICE DE TABLAS

Tabla 3.1: Parámetros eléctricos de transformadores elevadores PFV Diego de Almagro Sur [5]	13
Tabla 3.2: Parámetros eléctricos del transformador de poder de la S/E Inca de Oro [7]	13
Tabla 3.3: Características de conductor de fase [8].	14
Tabla 3.4: Características de cable de guardia [8]	15
Tabla 3.5: Componentes principales del centro de transformación MVPS 4600-S2 (Fuente: Fabricante SMA	۱[5]).
	20
Tabla 4.1: Resumen de variables registradas en el PFV Diego de Almagro Sur	32
Tabla 4.2: Resumen de potencias activa en el PFV Diego de Almagro Sur.	33
Tabla 4.3: Resumen de potencias calculadas y registradas asociadas al PFV Diego de Almagro Sur	37
Tabla 6.1: Registros de irradiancia en la zona de emplazamiento PFV Diego Almagro de Sur de diferentes	
fuentes de información	51

1 INTRODUCCIÓN

Colbún S.A. desarrolla el proyecto Parque Fotovoltaico Diego de Almagro Sur (NUP 1265), ubicado en la comuna de Diego de Almagro, Región de Atacama. El proyecto tendrá una potencia instalada de 232 MWp de capacidad total. La energía generada por el Parque Fotovoltaico (PFV) se evacuará a través de una línea de transmisión de circuito simple de 220 kV y 2,6 km de longitud que se conectará a la subestación Illapa 220 kV.

En el contexto del proceso de conexión y operación comercial del Parque Fotovoltaico es que se desarrollaron las pruebas de: Determinación de mínimo técnico, determinación de máxima potencia, parámetros proceso de partida y detención de unidades generadoras y validación de modelo dinámico. En el presente informe se entregan los resultados y conclusiones obtenidos en los ensayos de campo relacionados a la determinación de la potencia máxima de la Planta Fotovoltaica Diego de Almagro Sur, realizadas en el mes de junio del 2022.

2 **O**BJETIVOS

El presente informe tiene como objetivo determinar la máxima potencia que podría entregar el PFV Diego de Almagro Sur. Las mediciones se realizan dando cumplimiento al Anexo Técnico de la NTSyCS "Pruebas de Potencia Máxima en Unidades Generadoras" septiembre del 2020, y utilizando como guía el documenta elaborado por el CEN: "Puesta en Servicio de Unidades Generadoras – Aplicación de Anexos Técnicos".

3 ANTECEDENTES

3.1 ANTECEDENTES PFV DIEGO DE ALMAGRO SUR

3.1.1 Descripción del proyecto

El proyecto consiste en la generación fotovoltaica de 232 MWp, conectándose a la subestación elevadora Inca de Oro para ser evacuada mediante una línea de transmisión de circuito simple de 220 kV y 2,6km de longitud, que se conectará a la subestación Illapa existente en 220 kV.

El Proyecto se encuentra emplazado en la Comuna de Diego de Almagro, Provincia de Chañaral, Región de Atacama, aproximadamente a unos 25 km al sur de la ciudad Diego de Almagro y a 92,5 km al noreste de la cuidad de Copiapó, como se puede observar de forma referencial en la Figura 3.1.

Figura 3.1: Ubicación geográfica referencial PFV Diego de Almagro Sur. Fuente: Google Earth.

La ubicación del PFV Diego de Almagro Sur con respecto al sistema eléctrico nacional es el siguiente:

Figura 3.2: Mapa de ubicación del PFV Diego de Almagro Sur en el SEN.

B

3.1.2 Diagrama unilineal zona de interconexión del proyecto

En la Figura 3.3 se presenta el diagrama unilineal del entorno eléctrico en donde se conectará el proyecto, a su vez, en la Figura 3.4 se presenta el diagrama unilineal de la zona con el proyecto conectado.

B

Figura 3.4: Diagrama unilineal zona de influencia con proyecto.

B./

3.2 ANTECEDENTES TÉCNICOS DEL PFV DIEGO DE ALMAGRO SUR

La planta de generación solar posee 12 alimentadores que conectan los centros de transformación con 2 barras de 33kV, correspondientes al devanado secundario y terciario del transformador de poder. En 10 de los alimentadores se conectan 4 inversores del fabricante SMA, mientras que en los alimentadores restantes se conectan 3 inversores del mismo tipo, tal como se observa en el diagrama simplificado de la Figura 3.5. Cada inversor se encuentra asociado a un centro de transformación del tipo MVPS 4600-S2.

Figura 3.5: Diagrama unilineal MT e inversores - PFV Diego de Almagro Sur.

Los principales elementos pertenecientes a la red interna del PFV se desglosa a continuación:

- 1. Línea aérea Inca de Oro Illapa 1x220 kVA (2,6 km).
- 2. Transformador elevador 220/33/33 kV 250 MVA.
- 3. Transformador zigzag (reactor de neutro).
- 4. Red colectora (sistema de cables de 240 mm², 400 mm² y 630 mm²).
- 5. Transformador de bloque de los inversores.
- 6. Inversores.
- 7. Transformador de servicios auxiliares.
- 8. Banco de condensadores: 40 Mvar, distribuidos entre el Switchgear 1 (20 Mvar) y Switchgear 2 (20 Mvar).

Por su parte, en la Figura 3.6 se presenta el diagrama unilineal de la SE elevadora Inca de Oro.

Figura 3.6: Diagrama unilineal simplificado SE Elevadora 220/33kV - PFV Diego de Almagro Sur.

A su vez, en la Figura 3.7 es posible apreciar el diagrama unilineal correspondiente a uno de los alimentadores que se conectan a la barra de 33kV de la subestación elevadora Inca de Oro.

B

Colbun

3.2.1 Transformadores de bloque BT / MT

El PFV Diego de Almagro Sur posee 46 transformadores elevadores de tensión, en donde cada uno se conecta a un solo inversor, cuya hoja de datos se presenta en el ANEXO I. Las principales características de los transformadores de bloque se presentan a continuación:

DESCRIPCIÓN	DETALLE
Potencia Nominal	4600 kVA @25°C
Niveles de tensión	33 / 0,69 kV
Grupo de conexión	Dy11
N° de fases	3
Impedancia cc	6,5%
Perdidas en vacío	3,056 kW
Perdidas a plena carga	37,091 kW
Frecuencia	50 Hz
Altitud de trabajo	1,000 m.s.n.m.
Cambiador de taps	No posee

Tabla 3.1: Parámetros eléctricos de transformadores elevadores PFV Diego de Almagro Sur [5].

3.2.2 Transformador de potencia S/E Inca de Oro

La subestación Inca de Oro, posee un transformador de potencia trifásico de tres devanados 220/33/33 kV de 250 MVA ONAF2, cuyo grupo de conexión es YNd11d11 (conectado a tierra en el lado de 220 kV), con cambiador de tap bajo carga. La foto de placa del transformador se presenta en el ANEXO II, mientras que en la Tabla 3.2 se indican las características principales del transformador de poder:

DESCRIPCIÓN	DETALLE
Potencia Nominal	150 / 200 / 250 MVA
Niveles de tensión	220 ±8x1,25% / 33 / 33 kV
Refrigeración	ONAN / ONAF1 / ONAF2
Grupo de conexión	YNd11d11
N° de fases	3
Impedancia (%) HV-LV1	11,82% (base 125 MVA)
Impedancia (%) HV-LV2	11,95% (base 125 MVA)
Impedancia (%) LV1-LV2	22,34% (base 125 MVA)
Impedancia homopolar (%)	11,08% (base 250MVA)
Pérdidas cobre HV-LV1	368,86 kW (125 MVA)
Pérdidas cobre HV-LV2	369,56 kW (125 MVA)
Pérdidas cobre Lv1-LV2	720,58 kW (125 MVA)
Pérdidas en vacío	100,7 kW
Frecuencia	50 Hz
Elevación de temperatura	80° C
Ubicación del cambiado de taps	Alta tensión
Altitud de trabajo	1,000 m.s.n.m.

Tabla 3.2: Parámetros eléctricos del transformador de poder de la S/E Inca de Oro [7].

3.2.3 Línea Diego de Almagro Sur – Illapa 1x220kV

El parque fotovoltaico Diego de Almagro Sur evacuará su potencia a través de una línea de transmisión de simple circuito de 220 kV y 2,6 km de largo (sin transposiciones). Además, esta línea tendrá un cable de guardia tipo OPGW para brindar protección a la línea contra descargas atmosféricas y proporcionar un canal de comunicación entre las subestaciones de ambos extremos.

Se utiliza la torre de suspensión S220.1M H=20,4 para el modelamiento de la línea 1x220 kV Inca de Oro - Illapa, la cual es la estructura más representativa de la línea. A continuación, se muestra la silueta de la estructura utilizada [8]:

Figura 3.8: Silueta de torre de suspensión S220.1M h=20,4

El tipo de conductor de la línea corresponde a FLINT 375,4 mm², cuyas principales características se indican a continuación:

Características	Valor
Тіро	Aleación de aluminio (AAAC)
Nombre de código	Flint
Sección transversal	375,4 [mm²]
Diámetro nominal del conductor	25,16 [mm]
Tensión de rotura	11,041 [kg]
Peso del conductor	1,0299 [kg]
Radio medio geométrico	9,797 [mm]
Resistencia DC a 20°C	0,08944 [Ω /km]

Tabla 3.3: Características de conductor de fase [8].

Del mismo modo, en la Tabla 3.4 se muestran las principales características del conductor utilizado para el cable de guardia son:

Características	Valor
Тіро	OPGW 24 Fibras
Sección transversal	121,86 [mm²]
Diámetro nominal del conductor	14,6 [mm]
Radio medio geométrico	5,69 [mm]
Resistencia DC a 20°C	0,327 [Ω /km]
Resistencia DC a 30°C	0,338 [Ω /km]
Тіро	OPGW 24 Fibras

Tabla 3.4: Características de cable de guardia [8].

3.2.4 Red de media tensión en 33kV

3.2.4.1 Transformador Zig-Zag (Reactor de neutro)

El PFV Diego de Almagro Sur cuenta con dos reactores de puesta a tierra, uno en cada parrón proyectado en el nivel de 33kV. Los cuales se modelan considerando la impedancia de secuencia cero informada en sus datos de placa.

TIPO DE TRANSFORMADOR IMPEDANCIA DE SECUENCIA CERO CORRIENTE NEUTRA DE CORTO PLAZO FRECUENCIA NOMINAL NUMERO DE FASE GRUPO DE CONEXIÓN IMPEDANCIA DE CORTOCIRCUITO FECHA DE FABRICACIÓN.	STD-600/33 23, 5 Ω 394, 7A, 10S 50Hz 3 ZN /	DE PUESTA A estándar no. tipo de enfriamiento pérdida sin carga peso de cuerpo principal peso de aceite peso total nivel de aislamiento número de serie	TIERRA IEC-60076 ONAN W 1350 KG 840 KG 3370 KG LI170AC70
TIPO DE TRANSFORMADOR INPEDANCIA DE SECUENCIA CERO CORRIENTE NEUTRA DE CORTO PLAZO FRECUENCIA NOMINAL NUMERO DE FASE GRUPO DE CONEXION IMPEDANCIA DE CORTOCIRCUITO FECHA DE MANUFACTURA	SJD-600/33 18.6 Ω 396.7A, 10S 50Hz 3 ZN /	DE PUESTA A numero estandar tipo de enfriamiento pérdida sin carga peso de cuerpo principal peso de aceite peso total nivel de aislamiento número de serie	TIERRA IEC-60076 ONAN W 1350 KG 840 KG 3370 KG LI170AC70

Figura 3.9: Extracto placas transformadores Zig-Zag [8].

İtem	Descripción	Unidad	Especificado	Ofrecido
2.0	2.0 CARACTERÍSTICAS ELÉCTRICAS RESISTENCIA DE P.A.T			
2.1	Cantidad de Equipos	c/u	2	2
2.2	Corriente durante la falla a Tierra	A	400	400
2.3	Resistencia	ohm	47.63	47.63
2.4	tiempo de operación	S	10	10
2.5	Frecuencia Nominal	Hz	50	50
2.6	Tensión nominal del resistor (tensión fase/neutro)	k∨	33/√3	33/ √ 3

Figura 3.10: Extracto HCTG Resistencia de neutro de reactor [8]

3.2.4.2 Cables de la red de media tensión en 33kV

La red colectora de media tensión se contará con un sistema de cables subterráneos, directamente enterrados, esquema de trébol. Se utilizan cuatro tamaños:

- Cable XLPE 630mm²: con un largo aproximado de 28559 m
- Cable XLPE 500mm²: con un largo aproximado de 203 m
- Cable XLPE 400mm²: con un largo aproximado de 18717 m
- Cable XLPE 240mm²: con un largo aproximado de 7378 m

La Figura 3.11 indica las principales características de los cables conductores entre las estaciones convertidoras y las barras principales de media tensión, a su vez, en la Figura 3.12 se presente un diagrama unilineal con la distribución de conductores, centros de transformación e inversores pertenecientes al PFV Diego de Almagro Sur.

Feeder No.	Desde	Hacia	Cable	Longitud [m]	Feeder No.	Desde	Hacia	Cable	Longitud [m]
	Barra 1	CT02	3x2x400mm2	2673		Barra 2	CT24	3x2x630mm2	313
1	CT01	CT12	3x1x240mm2	1261	7	CT22	CT21	3x1x240mm2	518
	CT02	CT01	3x1x400mm2	443	'	CT23	CT22	3x1x630mm2	517
	Barra 1	CT06	3x2x630mm2	1796		CT24	CT23	3x2x400mm2	517
0	CT04	CT03	3x1x240mm2	376		Barra 2	CT29	3x2x630mm2	1763
2	CT05	CT04	3x1x400mm2	385	0	CT27	CT26	3x1x240mm2	547
	CT06	CT05	3x1x630mm2	383	8	CT28	CT27	3x1x240mm2	546
	Barra 1	CT10	3x2x630mm2	910		CT29	CT28	3x1x630mm2	545
	CT08	CT07	3x1x240mm2	382		Barra 2	CT33	3x2x630mm2	1078
3	CT09	CT08	3x1x400mm2	382		CT31	CT30	3x1x240mm2	544
	CT10	CT09	3x1x630mm2	381	9	CT32	CT31	3x1x630mm2	544
	Barra 1	CT38	3x2x400mm2	2956		CT33	CT32	3x2x400mm2	543
4	CT25	CT11	3x1x240mm2	605		Barra 2	CT37	3x2x630mm2	393
	CT38	CT25	3x1x400mm2	1131	40	CT35	CT34	3x1x240mm2	542
	Barra 1	CT16	3x2x630mm2	1676	10	CT36	CT35	3x1x630mm2	542
6	CT14	CT13	3x1x240mm2	522		CT37	CT36	3x2x400mm2	541
C	CT15	CT14	3x1x240mm2	521		Barra 2	CT42	3x2x630mm2	1752
	CT16	CT15	3x1x630mm2	521		CT40	CT39	3x1x240mm2	496
	Barra 1	CT20	3x2x630mm2	995	11	CT41	CT40	3x1x400mm2	491
	CT18	CT17	3x1x240mm2	519		CT42	CT41	3x1x630mm2	563
b	CT19	CT18	3x1x630mm2	519		Barra 2	CT46	3x2x630mm2	960
	CT20	CT19	3x2x400mm2	520	10	CT44	CT43	3x1x630mm2	388
-	Parrón 1	Barra 1	3x4x500mm2	25	12	CT45	CT44	3x1x400mm2	387
·						CT46	CT45	3x1x630mm2	388
					-	Parrón 2	Barra 2	3x4x500mm2	25

Figura 3.11: Detalle cables red media tensión 33kV.

B

Figura 3.12: Diagrama unilineal de alimentadores y centros de transformación PFV Diego de Almagro Sur.

3.2.4.3 Banco de condensadores

El proyecto considera un banco de condensadores de 40 MVAr de potencia reactiva, distribuidos de manera equitativa entre ambas barras de 33 kV, es decir, un banco de 20 MVAr por cada una.

NÚMERO DE SERIE	4676	TAG NO. BANCO DE CON	DENSADORES 1	NÚMERO DE SERIE 4677 TAG NO. BANCO DE CONDENSADORE				
FECHA DE FABRICACIÓN	2021	P.O. NO.	24300 BBCC	FECHA DE FABRICACIO	ÓN 2021	P.O. NO.	24300 BBCC	
ESTÁNDAR	IEC 60871-1	TIPO	MECB36FI10	ESTÁNDAR	IEC 60871-1	TIPO	MECB36FI10	
NIVEL DE TENSIÓN	33kV	NIVEL DE AISLAMIENTO	70/170 kV/kVp	NIVEL DE TENSIÓN	33kV	NIVEL DE AISLAMIENTO	70/170 kV/kV	
SALIDA NOMINAL	20000 kvar	FRECUENCIA	50 Hz	SALIDA NOMINAL	20000 kvar	FRECUENCIA	50 Hz	
PESO TOTAL	8200 kg	CORRIENTE NOMINAL	349A	PESO TOTAL	8200 kg	CORRIENTE NOMINAL	3494	

Figura 3.13: Fotos de placa banco de condensadores.

3.2.5 Características generales de Inversores

El PFV Diego de Almagro Sur cuenta con paneles solares de sistema bifacial y son seguidores de hilera simple con retroceso. La totalidad de los paneles solares se conectan a 46 inversores modelo SMA SC 4600-UP de potencia nominal de 4,6 MVA. Cada uno de estos inversores se encuentra asociado a un centro de transformación modelo MVPS 4600-S2. Las características relevantes de los inversores y centros de transformación, entregadas por el fabricante SMA y que se presentan en mayor detalle en el ANEXO III, son las siguientes:

Número	Nomenclatura	Componentes principales
1	MVT	4140 kVA 33/0,69 kV KNAN hermetically sealed liquid immersed transformer (SBG)
2	INV	Central Inverter SC 4600-UP
3	BW	Low Voltage Busbar/Busway between inverter and transformer
4	MVSG	Medium Voltage Ring Main Unit Switchgear SIEMENS 8DJH RRL with Circuit breaker
5	MVC	3 x Medium Voltage Cable N2XS(F)2Y 18/30kV 70mm ² between transformer and Medium Voltage Switchgear
6	STSD	230V 50 Hz low voltage distribution panel
7	SCAS-P	Low voltage cable from BW to fuse holder for installation of auxiliary power supply

Tabla 3.5: Componentes principales del centro de transformación MVPS 4600-S2 (Fuente: Fabricante SMA [5]).

Power Class	:			MVPS-4200-S2-US-10
Target Country	:	CL	\rightarrow	Chile
Inverter type	:	0	\rightarrow	SC UP
Inverter Power	:	3	\rightarrow	4600 kVA
Ambient Temperature	:	1	\rightarrow	-25°C to +55°C
Altitude	:	1	\rightarrow	1001 - 2000 m
Environment	:	0	\rightarrow	Standard
MV Transformer	:	1	\rightarrow	KNAN
Transformer Protection	:	1	\rightarrow	Full Protection
Nominal Voltage	:	Н	\rightarrow	33 kV
Nominal Frequency	:	0	\rightarrow	50 Hz
Transformer Vector Group	:	0	\rightarrow	Dy11
Transformer Tap Changer	:	1	\rightarrow	With
Transformer Shield Winding	:	0	\rightarrow	Without
Transformer Load Profile	:	6	\rightarrow	24 Hours
Transformer Losses	:	1	\rightarrow	Eco Design 1
Oil Containment	:	1	\rightarrow	With
MV Switchgear	:	2	\rightarrow	3F-SD-SD-CB-36 kV
Accessories MV Switchgear	:	1	\rightarrow	Auxiliary Contacts
LV-Transformer	:	2	\rightarrow	20 kVA, 400 V
Safety Equipment	:	0	\rightarrow	Without
Monitoring		1	\rightarrow	MVSG
Cable Entry Kit	:	1	\rightarrow	With
Transport Packaging	:	1	\rightarrow	Sea Freight
Country Package	:	0	\rightarrow	Without
Language	:	ES	\rightarrow	Spanish
Factory Warranty	:	0	\rightarrow	1 year
Customized Solution		1	\rightarrow	Yes

Figura 3.14: Características centro de transformación MVPS 4600-S2 (Fuente: Fabricante SMA [5]).

En la Figura 3.15 y Figura 3.16 se evidencia el aporte de potencia activa y reactiva que puede alcanzar cada inversor para distintos niveles de tensión.

Figura 3.15: Curvas de capacidad de potencia activa y reactiva 25°C y tensión de red U≥Un – Inversores SMA SC 4600-UP . (Fuente: Datasheet fabricante [6]).

Respecto al consumo de servicio auxiliares de cada centro de transformación, el fabricante en el documento [6], indica lo siguiente: "El inversor convierte la energía de CC a CA, lo que requiere algo de energía auxiliar para el sistema de control, comunicación y enfriamiento. La cantidad de energía auxiliar depende de la temperatura ambiente y de la potencia de salida producida. La alimentación auxiliar se extrae del lado de CA en los terminales del inversor.

Si la potencia fotovoltaica disponible supera el 100 % de la potencia de CC que puede convertir el inversor según el valor nominal de la placa de datos, el inversor produce algo más de potencia de CA para compensar sus pérdidas internas. De esta forma el consumo auxiliar efectivo del inversor es de 0 kVA en cuanto la potencia DC supera el 100%. En la Figura 3.17 y en la Figura 3.18 se presenta de manera gráfica el comportamiento descrito anteriormente."

Figura 3.17: Consumo de servicios auxiliares en un día soleado [5].

Figura 3.18: Consumo de servicios auxiliares en un día nublado [5].

3.3 ANTECEDENTES Y EXIGENCIAS NORMATIVAS

Las Empresas Generadoras cuyas unidades generadoras hayan entrado en operación en el SEN y aquellas que estén realizando pruebas de operatividad previas a su entrada en operación, deberán informar al Coordinador, la potencia máxima que es capaz de generar su parque o central, conforme a los plazos y formas de acuerdo con lo requerido en el anexo técnico: "Pruebas de potencia máxima en unidades generadoras".

El anexo técnico mencionado anteriormente, en su artículo 39 "*Potencia Máxima en unidades generadoras cuya fuente es renovable no convencional sin capacidad de regulación*" se indica que:

"En el caso de centrales de energía renovable que no tengan capacidad de regulación, la empresa generadora deberá entregar un informe técnico emitido por un experto técnico, cuya revisión y plazos para aprobar el valor informado, se regirá por lo establecido en el presente Anexo."

"Cualquiera sea el caso, el informe, deberá especificar las metodologías, cálculos utilizados y todos antecedentes y aspectos técnicos que fueron utilizados para la obtención del valor de Potencia Máxima informado."

Además, en su artículo 9 "Consideraciones en la determinación del valor de Potencia Máxima: El valor de Potencia Máxima de las unidades generadoras señalado en el presente Anexo, deberá ser representativo de las características técnicas propias de dichas unidades. Aquellas restricciones operativas tales como restricciones del sistema de transmisión, medioambientales, convenios de riesgo, entre otras, no deberán ser consideradas en la determinación de este valor".

Por ende, el presente informe técnico contiene la información solicitada en el anexo técnico "Pruebas de potencia máxima en unidades generadoras".

4 DETERMINACIÓN DE POTENCIA MÁXIMA PARQUE FOTOVOLTAICO DIEGO DE ALMAGRO SUR

En la presente sección se determina la potencia máxima del PFV Diego de Almagro Sur considerando lo señalado en el anexo técnico "Pruebas de Potencia Máxima en Unidades Generadoras".

En el documento de Aplicación de Anexos Técnicos [11], sección potencia máxima, se definen los siguientes puntos de inyección de corriente y metodología para el cálculo la potencia máxima.

Los componentes del parque ERNC son los siguientes:

- 1. Generador equivalente: Corresponde a la suma de los aportes distribuidos de potencia activa alterna de cada inversor del parque ERNC.
- 2. Pérdidas en sistema colector del parque: Corresponde a las pérdidas del sistema colector del parque ERNC, principalmente en cables de baja y media tensión, y en los transformadores colectores que elevan de baja a media tensión.
- 3. Servicios Auxiliares (SS.AA.) de la central.
- 4. Barra de media tensión (MT): Corresponde a la tensión en el lado de baja tensión del transformador de poder de la central.
- 5. Transformador de Poder: Equipo elevador presente en la subestación de salida del parque ERNC.
- 6. Barra de alta tensión (AT): Corresponde a la tensión en el lado de alta tensión del transformador de poder de la central.
- 7. Línea dedicada de la central: Línea de alta tensión que vincula el parque ERNC con el sistema eléctrico.
- 8. Sistema Eléctrico Nacional (SEN).
- 9. P1: Potencia inyectada por el parque ERNC en la barra de alta tensión de su subestación de salida.
- 10. P2: Potencia inyectada por el parque ERNC en la barra de media tensión de su subestación de salida.

Considerando la descripción anterior, el CEN solicita enviar e incorporar al informe técnico la siguiente información:

- a) P1: Potencia activa inyectada en la barra de alta tensión (AT) en la central [MW].
- b) P2: Potencia activa inyectada en la barra de media tensión (MT) de la central.
- c) Ptrafo: Perdidas del transformador de poder de la central [MW].
- d) SS.AA.: Servicios auxiliares de la central [MW].
- e) Pcolector: Perdidas en el sistema colector del parque [MW].

Finalmente, la Potencia Máxima Activa Bruta (Pmax bruta) de la central quedará definido por:

PMax bruta = P1 + Ptrafo + SS.AA. + Pcolector

 $\acute{0}$ PMax bruta = P2 + Pcolector

Y la potencia máxima neta de la central quedará definida como:

PMax neta = P1 ó PMax neta = P2 - SS.AA. - Ptrafo

4.1 PRUEBA DE POTENCIA MÁXIMA

Los registros de la prueba de potencia máxima del PFV Diego de Almagro Sur corresponden a la generación del día 7 de junio de 2022, las mediciones se llevaron a cabo con la totalidad del parque en servicio y representan los registros de mayor irradiancia de acuerdo con la estacionalidad del periodo de muestreo.

Durante el día de las pruebas, se registró la potencia activa inyectada en el punto de conexión del parque al SEN (P1), tal como se muestra en la Figura 4.1. Además, se registra la potencia inyectada en las barras de media tensión en 33kV de la SE inca de Oro (P2), lo cual se presenta en la Figura 4.2. Los registros obtenidos se extrajeron directamente del sistema SCADA del PFV Diego de Almagro Sur, y se entregan en el documento adjunto "ANEXO 1 Potencia activa 52J1 - 52FT11 y 52FT12 SE Inca de Oro.xlsx".

Adicionalmente, se cuenta con los registros de temperatura panel e irradiancia incidente (perpendicular) en los paneles, curvas que se presentan en la Figura 4.3 y Figura 4.4, respectivamente. Dichas mediciones se entregan en el documento adjunto "ANEXO 2 Irradiancia y temperatura PFV Diego de Almagro Sur.xlsx".

Figura 4.1: Potencia activa paño 52J1 SE Inca de Oro, 7 de junio 2022.

Figura 4.2: Potencia activa incomings 33kV SE Inca de Oro, 7 de junio 2022.

Figura 4.3: Temperatura panel registrada en CT 12, 7 de junio 2022.

B,

Figura 4.4: Irradiancia registrada en CT 12, 7 de junio 2022.

Para obtener la potencia máxima registrada durante el día de las pruebas, primero se identifica la potencia máxima alcanzada en el punto de conexión del parque, lo cual ocurre a las 09 horas con 53 minutos y con una potencia inyectada en P1 de 146,459 MW, mientras que la potencia inyectada en las barras de media tensión del transformador de poder es de 146,864 MW, tal como se observa en la Figura 4.5. Con ello, es posible determinar las pérdidas medidas del transformador de poder, teniendo un valor de 405 kW. Luego, para esa misma hora se obtiene que la irradiancia registrada es de 713 W/m² y la temperatura en el panel es de 36,061 °C.

Figura 4.5: Registro de potencia activa en lado AT y MT del transformador de poder, tiempo acotado 7 de junio 2022.

De acuerdo con lo señalado en la sección 3.2.5, respecto al consumo de servicio auxiliares de cada centro de transformación [6], la alimentación auxiliar se extrae del lado de CC en los terminales del inversor. Para los servicios auxiliares de la SE Inca de Oro, se procede mediante el registro de la potencia activa en la barra de 400V. A continuación, se muestra la tendencia de la potencia activa en los SS.AA. de la SE, en donde el valor promedio es de 10,65 kW.

Figura 4.6: Potencia activa SS.AA. SE Inca de Oro, 7 de junio 2022.

A continuación, se resumen las distintas variables de interés descritas al comienzo de la presente sección, y su respectivo registro correspondiente a las 09:53:57.

Punto de medición	Valor
Potencia activa en el paño 52J1 de la SE Inca de Oro (P1)	146,459 MW
Potencia activa en barras 33kV la SE Inca de Oro (P2)	146,864 MW
Pérdidas del transformador de poder medidas	0,405 MW
Irradiancia en el CT 12	713 W/m ²
Temperatura panel en el CT 12	36,061 °C

Tabla 4.1: Resumen de variables registradas en el PFV Diego de Almagro Sur.

Para determinar las pérdidas del sistema colector se permite utilizar simulaciones, llevadas a cabo en la base de datos adjunta en el archivo "ANEXO 4 BD Pmax-PFV Diego de Almagro Sur.pfd". El modelo en el software Power Factory Digsilent del PFV Diego de Almagro Sur se basa en lo desarrollado en el documento [15], y considera las características técnicas descritas en el capítulo 3. De esta forma, en la simulación se inyecta la misma potencia activa en el punto de conexión que el valor registrado en terreno (P1=146,459 MW), necesitándose una consigna de 3,21478 MW en cada inversor.

Las pérdidas del sistema colector se obtienen a partir de las pérdidas calculadas mediante el software PF Digsilent (Figura 4.7), en donde el valor "*Grid Losses*" indica las pérdidas totales de la red modelada. Entonces, para determinar las pérdidas del sistema colector es necesario restar las pérdidas del transformador de poder a las "*Grid Losses*", lo que resulta en 1,005 MW.

 								DIg	JSILENT	Proje	ct:		I
 								20	21 SP3	Date:	18-07-2	2022	
Load Flow Calculation	n											Grid	Summary
AC Load Flow, ba Automatic tap ad Consider reactive	lanced justme e powe	d, positiv ent of tra er limits	e sequ nsform	uence mers No No	 	Automatic Max. Accep Bus Equ Model E	Model A table L ations(quation	daptati oad Flo HV) s	ion for (ow Error	Convergen	ce	No 1. 0.	 00 kVA 10 %
Grid: PFV DAS		System S	tage:	PFV DAS	Stu	dy Case: Stu	iy Case			Annex	:		/ 1
Grid: PFV DAS		Summary											
No. of Substations No. of 2-w Trfs. No. of Loads	0 48 2	N N N	o. of o. of o. of	Busbars 3-w Trfs. Shunts/Filters	94 1 2	No. of No. of No. of	fermina syn. Ma SVS	ls chines	5 0 0	No. No.	of Lines of asyn.1	Machines	48 0
Generation External Infeed Inter Grid Flow Load P(U) Load P(U) Load P(Un-U) Motor Load Grid Losses Line Charging Compensation ind. Compensation cap.		147.88 -146.46 0.00 0.01 0.00 0.00 1.41 211.60 0.00	MW MW MW MW MW MW MW MW MW	0.00 12.05 0.00 0.00 -0.00 0.00 12.05 -5.38 0.00 0.00	Mvar Mvar Mvar Mvar Mvar Mvar Mvar Mvar	147.88 146.95 0.01 0.01 0.00	MVA MVA MVA MVA						
 Total Power Factor: Generation Load/Motor 	= =]	1.0 1.00 / 0.0	0 [-] 0 [-]										

Figura 4.7: Resumen de resultados en simulación BD Power Factory DigSilent.

De acuerdo con lo indicado en [11], la Potencia Máxima Activa Bruta (Pmax bruta) de la central queda definido por:

$$\begin{split} P_{Maxbruta} &= P_1 + P_{trafo} + SS.AA. + P_{colector} \\ P_{Maxbruta} &= 146,459 + 0,405 + 0,01065 + 1,005 \\ P_{Maxbruta} &= 147,880 MW \end{split}$$

En la Tabla 4.2 se entregan los valores de potencia activa obtenidos durante la prueba de potencia máxima.

Punto de medición	Valor
Potencia activa en el paño 52J1 de la SE Inca de Oro (P1)	146,459 MW
Pérdidas del transformador de poder (P _{trafo})	0,405 MW
Pérdidas sistema colector (P _{colector})	1,005 MW
Servicios auxiliares SE Inca de Oro (SS.AA.)	0,01065 MW
Potencia activa bruta (P _{Maxbruta})	147,880 MW

Tabla 4.2: Resumen de potencias activa en el PFV Diego de Almagro Sur.

4.2 DETERMINACIÓN DE POTENCIA MÁXIMA EN CONDICIÓN DE OPERACIÓN NOMINAL

Considerando que en la fecha en que se desarrollan las pruebas no se alcanza la irradiancia máxima posible en la zona de emplazamiento del parque, se debe determinar la potencia máxima bruta del PFV Diego de Almagro Sur para condiciones nominales de irradiancia y temperatura del panel, esto es, condiciones de irradiancia y temperatura estandarizadas o STC (*Standard Test Conditions*). Los valores estándar de operación según el ANEXO IV corresponden a 1000 W/m² y 25°C.

En el documento adjunto "ANEXO 5 Registro Irradiancia histórico PFV DAS.xlsx" se entrega la data histórica de irradiancia desde el año 1999 hasta el 2022, y cómo es posible visualizar en la Figura 4.8, la irradiancia registrada supera ampliamente a la irradiancia estándar de 1000 W/m^2 .

La corrección por irradiancia de la potencia máxima bruta medida se realiza bajo el supuesto que la potencia activa generada por los inversores tiene una dependencia lineal con la magnitud de la irradiancia, tal como se verifica en la Figura 4.9. La potencia máxima bruta corregida por la irradiancia se calcula de la siguiente forma:

$$P_{maxbruta-Corr.I} = P_{maxbruta-med} * \frac{Irradiancia_{STC}}{Irradiancia_{med}}$$
$$P_{maxbruta-Corr.I} = 147,88 * \frac{1000 \frac{W}{m^2}}{713 \frac{W}{m^2}} = 207,405 MW$$

Para realizar la corrección por temperatura, se necesita la temperatura de panel (T_p), la cual se registra mediante el equipo meteorológico del parque y se presentó en la Tabla 4.1. Esta temperatura del panel depende de la irradiancia y las características constructivas del mismo panel solar, donde su cálculo se puede obtener por la siguiente expresión [12]:

$$T_p = T_{ambient} + (NOCT - 20 °C) * \frac{Irradiancia_{med}}{Irradiancia_{NOCT}}$$

Los parámetros nominales específicos de los paneles solares son los siguientes (ANEXO IV):

NOCT: 41 °C

Irradiancia_{NOCT}: 800 W/m²

Luego, la expresión de corrección por temperatura de la potencia activa según [12], depende del coeficiente de temperatura de potencia máxima C_{temp} , la temperatura del panel medida y la temperatura en condición estándar. La obtención de la potencia activa bruta se muestra a continuación:

$$P_{maxbruta-Corr.} = \frac{P_{1-Corr.I}}{1 + C_{temp} * \Delta T} = \frac{207,405}{1 - 0,0035 * (36,061 - 25)} = 215,758 \ [MW]$$
$$P_{maxbruta-Corr.} = 215,758 \ [MW]$$

Resulta importante indicar que, el valor de potencia máxima bruta alcanzable por el PFV queda limitado por la potencia nominal de los inversores, la cual corresponde a 211,6 MW (46 inversores de 4,6MW). Esto considerando la información suministrada por el fabricante de los inversores, que se muestra en la Figura 3.17, observándose que cuando existe exceso de recurso solar, un porcentaje de la potencia se destina a alimentar los servicios auxiliares de cada inversor, mientras que no se puede generar más potencia que el valor nominal de los inversores fotovoltaicos, o sea 4,6 MW cada uno. En el ANEXO V se corrobora la potencia máxima de la planta fotovoltaica según las mediciones realizadas en el parque y utilizando un modelo en el software *PVSyst 7.2*, el cual considera en forma detallada el comportamiento de los módulos fotovoltaicos e inversores y diferentes fuentes de datos de irradiancia. En definitiva, la potencia máxima bruta del PFV Diego de Almagro Sur bajo condición de operación STC es $P_{maxbruta-STC} = 211,6 [MW]$

Figura 4.9: Irradiancia versus potencia activa registrada en PFV Diego de Almagro Sur.

La potencia máxima neta corregida (P_{1-STC}) se determina a partir de la potencia máxima bruta STC $(P_{maxbruta-STC})$, basta restar a esta última los consumos asociados al sistema colector del PFV, los consumos auxiliares de la SE Inca de Oro y las pérdidas del transformador de poder. A continuación, se presenta la relación entre las potencias descritas:

$$P_{maxbruta-STC} = P_{1-STC} + P_{colector} + SS.AA. + P_{trafo}$$

Las pérdidas del sistema colector y del transformador de poder para este punto de operación se determinan mediante simulaciones en la base de datos adjunta en el archivo "ANEXO 4 BD Pmax-PFV Diego de Almagro Sur.pfd". En la simulación se inyecta la potencia nominal de 4,6MW en cada uno de los 46 inversores, así en la Figura 4.10 se presenta la potencia inyectada en el punto de conexión, valor remarcado con el cuadro de color **rojo**, mientras en los cuadros de color **azul** se indica la potencia inyectada en las barras de 33 kV de la SE Elevadora Inca de Oro. Con dichos valores remarcados se obtiene que las pérdidas del transformador de poder son 0,626 MW. Además, En el cuadro de color **marrón** se entrega la potencia inyectada en la SE Illapa obtenida, lo cual corresponde a 208,737 MW.

En la base de datos se encuentra el modelo de la línea 1x220 kV Inca de Oro – Illapa de 2,6 km, lo cual permite obtener las pérdidas de esta y que alcanzan un valor de 0,208 MW, tal como se muestra en la Figura 4.10 (cuadro color **verde**). Las pérdidas del sistema colector resultan de restar las pérdidas del transformador de poder y de la línea 1x220 kV Inca de Oro – Illapa, a las *"Grid Losses"* (Figura 4.11), lo que resulta en 2,018 MW.

Figura 4.10: Simulación de condición potencia máxima condición de operación STC.

								DIgS PowerF	ILENT Cactory	Project	t:	
									.1 5F5	Date:		
Load Flow Calculatio	n										Grid	Summa
AC Load Flow, ba	lanced	, positiv	re sequ	lence		Automatic M	lodel Ad	aptatio	n for C	onvergence	e N	
Automatic tap ad	justme	nt of tra	nsfor	ners No	1	Max. Accept	able Lo	ad Flow	Error			
Consider reactiv	e powe	r limits		No	1	Bus Equa	tions (H	V)			1	.00 kV
						Model Eq	uations				0	.10 %
Grid. PEV DAS		Sustem 9	tage.	PEV DAS	L Stu	dy Case: Stud	lv Case			Annex:		
						oube. obud						
Grid: PFV DAS		Summary										
No. of Substations	0	N	lo. of	Busbars	94	No. of 1	erminal	s	6	No. of	f Lines	49
No. of 2-w Trfs.	48	N	lo. of	3-w Trfs.	1	No. of s	syn. Mac	hines	0	No. of	f asyn.Machine	s 0
No. of Loads	2	N	lo. of	Shunts/Filters	2	No. of S	VS		0			
Generation	=	211.60	MW	0.00	Mvar	211.60	MVA					
External Infeed	=	-208.74	MW	30.92	Mvar	211.02	MVA					
Inter Grid Flow	=	0.00	MW	0.00	Mvar							
Load P(U)	=	0.01	MW	0.00	Mvar	0.01	MVA					
Load P(Un)	=	0.01	MW	0.00	Mvar	0.01	MVA					
Load P(Un-U)	=	0.00	MW	-0.00	Mvar							
Motor Load	=	0.00	MW	0.00	Mvar	0.00	MVA					
Grid Losses	=	2.852	MW	30.92	Mvar							
Line Charging	=			-5.69	Mvar							
Compensation ind.	=			0.00	Mvar							
Compensation cap.	=			0.00	Mvar							
Installed Capacity	=	211.60	MW									
Spinning Reserve	=	0.00	MW									
Total Power Factor:												
Generation	=	1.0	0 [-]]								
Load/Motor	= 1	.00 / 0.0	0 [-]	1								

Figura 4.11: Resumen de resultados en simulación BD Power Factory DigSilent condición de operación STC.

Por ende, la potencia máxima neta corregida en SE Inca de Oro resulta ser:

$$P_{1-STC} = P_{maxbruta-STC} - P_{colector} - SS.AA. - P_{trafo}$$
$$P_{1-STC} = 211,6 - 2,018 - 0,01065 - 0,626 = 208,945 MW$$
$$P_{1-STC} = 208,945 MW$$

De los registros obtenidos y cálculos desarrollados, se elabora la Tabla 4.3 con el resumen de las diferentes potencias de interés:

Elemento	Potencia [MW]
Potencia activa Neta SE Inca de Oro	208,945
Potencia activa Neta SE Illapa	208,737
Potencia activa Bruta	211,6
Pérdidas en el Transformador de poder	0,626
Pérdida sistema colector	2,018
Pérdidas Servicios Auxiliares*	0,01065
Pérdidas de línea 1x220 kV Inca de Oro - Illapa	0,208

Tabla 4.3: Resumen de potencias calculadas y registradas asociadas al PFV Diego de Almagro Sur.

*De acuerdo con las especificaciones del fabricante en ANEXO III, los inversores a plena producción obtienen la energía del sistema DC para los servicios auxiliares.

Se observa que la potencia activa neta en el punto de conexión del parque para condiciones estandarizadas es mayor a la potencia máxima en el punto de conexión (205 MW), declarados por Colbún en el documento [13].

5 CONCLUSIONES

En base a las mediciones en el paño 52J1 y los servicios auxiliares de la SE Inca de Oro realizadas el 7 de junio de 2022 y los registros SCADA recabados para el mismo día, resulta posible determinar que la potencia máxima neta del PFV Diego de Almagro Sur en la SE Illapa para condición de operación STC es de 208,737 MW.

Por otra parte, se ha determinado que: las pérdidas del transformador durante la potencia máxima son de 0,626MW, los consumos auxiliares de la SE Inca de Oro son de 10,65 kW, las pérdidas del sistema colector son de 2,018 MW, las pérdidas de la línea 1x220 kV Inca de Oro – Illapa son de 0,208 MW y la potencia máxima bruta es de 211,6 MW. Además, la potencia máxima neta en la SE Inca de Oro es de 208,945 MW.

Resulta importante indicar que, el valor de potencia máxima bruta alcanzable por el PFV queda limitado por la potencia nominal de los inversores, la cual corresponde a 211,6 MW (46 inversores de 4,6MW). Esto considerando la información suministrada por el fabricante de los inversores, mediciones realizadas en el parque fotovoltaico y distintos métodos de corrección que solicitó el CEN en su carta de observaciones.

6 REFERENCIAS

- [1]. Guía Técnica Homologación de Modelos Dinámicos centrales ERNC.pdf en su versión 3, CEN.
- [2]. Norma Técnica de Seguridad y Calidad de Servicio, CNE, septiembre 2020.
- [3]. Manual instrumento de medida "PureBB-3phases-SMX-0621-0100-V2-26122017(1).pdf", ELSPEC.
- [4]. Manual instrumento de medida "SMX-0618-0100-Portable-BLACKBOX-User-Installation-Manual-V1.3b.pdf", ELSPEC.
- [5]. Información técnica Proyecto Diego de Almagro Sur "MVPS 4600-S2 Documentation", SMA, 2020.
- [6]. Technical Information Document Sunny Central UP (-US), SMA Solar Technology, march 2020.
- [7]. Información técnica transformador de poder ABB: "Anexo 2 Placa transformador de Poder 3D.pdf" y "Anexo 3 - Ensayos del Transformador (FAT).pdf".
- [8]. Estudio ECAP PFV Diego de Almagro Sur: "PVDA-S42-5-e1-IN-20-4.pdf", Colbún.
- [9]. Estudio Estabilidad Transitoria PFV Diego de Almagro Sur: "PVDA-S42-5-e1-IN-18-2.pdf", Colbún.
- [10]. Technical Information SMA GRID GUARD 10.0 Grid Management Services via Inverter and System Controller.
- [11]. Puesta en Servicio de Unidades Generadoras Aplicación de Anexos Técnicos.
- [12]. Handbook of Photovoltaic Science and Engineering, Antonio Luque & Steven Hegedus, University of Delaware, USA.
- [13]. Análisis del cumplimiento de la carta de operación (Art 3.9 NTSyCS), Colbún, marzo 2021.
- [14]. Información técnica transformador de poder ABB: "Anexo 2 Placa transformador de Poder 3D.pdf" y "Anexo 3 - Ensayos del Transformador (FAT).pdf".
- [15]. Informe validación modelo dinámico PFV DAS: "NUP 1265-Informe VMD PFV Diego de Almagro Sur REV_1.pdf"

ANEXOS

ANEXO I DATASHEET Y PRUEBAS FÁBRICA TRANSFORMADOR DE BLOQUE BT/MT [5]

5 SBG Your dedicated p of the SGB-SMIT	artner Group	Ohmstraße D-08496 N Made in G	1 eumark/Si ermany	achsen	DINEN600)76			SM	A
lo. de Serie:		278861	8	Modelo:	-	DNT 4140	H/30	Año d	e Fabricación;	11.20
specificación:	D	00150054	01	Libro de In:	strucción:	1	B2	Versió	n de Fabricación:	
Clase:		KN	IAN	Liquido Aisl	lante:	MIE	DEL EN	Modo	de Operación:	Step-
Aumento Temp. Ac./Dev.		80 / 95	°C	Frecuencia		5	0 Hz			
Potencia Nom. @2	5°C:	4600 kV	A	@40°C	:	4140	kVA	Grup	o de Conexión:	Dy
Alta Tensión:		33000	V	Baia Te	nsión:	69	70 V	1W	1V 10	
AC/BIL (HV):		70 / 170	kV	AC/BIL (LV):	10 /	30 kV			
Mat. de Devanado (HV):		447. A. 1997	AL	Mat. de De	vanado (L	LV):	AL			
Perdidas en Vacio:	3709	NW (@115	°C)	Perdidas co	on Carga:	30	056 W	ŢL		TT
Corriente de cortocircuito	perman	iente: 1,034	L kA	6,5 % Te	ns, de con	rtocir. 414	O KVA		2U 2V 21	2V 2W
Pos. del desviador	1/A	2/8	3/C	4/D	5/E]			\wedge)
Voltaje Nominal:	54650 68.98	33825 70.66	33000	32175	51350 76,24			10	1W 20	/
Núcleo y Bobinas:		3969 kg	Pre	sión mín. de	operación:	4,	3 kPa max:	3,2 kPa	Perfil de Carga:	24h
Tanque:		2106 kg	Pre	sión de Alarn	na del Acei	site:		20 kPa	Pantal. entre devan.:	по
Masa total:		8520 kg	Niv	el de PCB (eq	nipo nuevi	(0):		0 ppm	Temp. Ambiente:	-25 - +40°C
Vol. + Masa de Aceite:	204	5 L / 1880 kg	Te	mp. de Alarm	a del Aceit	te:		122 °C		

CERTIFICADO DE ENSAYO No.d.fát	0 : 2788618
Tipo : DNT 4140 H/30 Ano de Prescri. : DIN EN 60076-1 Ano de	constr. : 2020
Modelo Transformátor en aceite Protección anticorrosiva: pintura C3	
Max 4600kVA @ 25°C temperature ambiente	
Potencia: 4140 0kVA Erec - 50 00Hz Tons d.c.ei: 5.5%	CI: LT M.d.oc · DR Um(kV) · 36.0/3.6
Ten. nom. [V]: 33000/690	Grad. =
Derivaciones : - ±2x2,5%	Pk [W] : 37091 Pk [W] : 37091 PEI [%] : 99.486 rigera. : Midel eN 1204 ukn [%] : 6.5 o medio : 1.880t : 1.880t Lpa(dB(A)) : 0 total :
Medición en vacío con conex. lado t.i. 690 V y 50.0	00 Hz
Fase Leer C Volt. Leer C	Amp. { A.va.medio } Leer Σ C vatio
2U-2V 687.74 2V-2W 690.82 2W-2U 691.25	4.59 3.44 4.30 4.86 Io 0.124% 3056
Medic. en cortocir. con conex. lado t.s. 33000 V y 50	.00 Hz
Fase Leer C Volt. Leer C 1U-1V I 1090.79 I <td>Amp. A.va.medio Leer Σ C vatio 36.92 1 1 7991</td>	Amp. A.va.medio Leer Σ C vatio 36.92 1 1 7991
1V-1W 1092.47 1W-1U 1122.91	37.27 37.31 - 34.0 37.75 37.75 37.31
Fase Leer C Volt. Leer C	Amp. A.va.medio Leer Σ C vatio
Pk en Conexi./Cortocir. 33000 V/690 V con 115°C con 23.5 °C Pz W i²R W Pk W ukm % ur % ux %	Pk en % con °C Pz W I²R W Pk W ukn % ur % ux %
29957 4378 32713 37091 6.51 0.90 6.45	5 1 1 1 1 1 1
Medic. de la resistencia con 23.5 °C (Valores de medic.[C)hm]]
Esc.de ten.V 1U-1V 1V-1W 1W-1U 33000.0 [: 1.617 1.621 1.616	2U-2V 2V-2W 2W-2U Esc.de ten.V
Medición de la relación de transformación (Frror [%))	
Conexión V 34650 33825 33000 32175 3	1350
Fransf. nom. 50.22 49.02 47.83 46.63 4	5.43
IU-1V/2U-2V 0.06 0.06 0.06 0.07 IV-1W/2V-2W 0.02 0.03 0.03 0.04 IW-1U/2W-2U 0.02 0.02 0.03 0.03	0.07 0.04 0.04
Ensayos de aislamiento	
En. del arrollam. kV Hz min	En. entre espir. kV Hz sec
t.s./t.i. Núcleo 70.0 50.0 1 t.i./Núcl. 10.0 50.0 1	t.iLado 1.380 125 48.0
Ensayos adicionales	NOTAS
0020207083 SPAN 40°C [35°C]	
Fecha de exped. Fecha de la prueba 05.11.2020 05.11.2020 Gohr 92	SÄCHSISCH-BAYERISCHE STARKSTROM-GERÄTEBAU Ohmstr. 01, 08492 Neumark/Sachsen
10	

B / B

ANEXO II

PLACA DE DATOS Y ENSAYOS DE FÁBRICA TRANSFORMADOR DE PODER

ı B_o

A D PROTOCOLO DE ENSAYOS Nº de Protocolo: 1ZBR 21 - 0338									Protocolo: 21 - 0338			
Resumen										Pág 3	Pág 3 de 127	
									<u>N° d</u>	e Serie:	2XBR62264	
Pérdidas e li	ntensida	d de y	Vacío									
Tensión (% de la	Posici	ón	Potencia	Base	I	Pérdidas ei	1 Vacío (kW)		Int	ensidad	de Vacío	
Nominal)			(MV	4)	M	ledidas	Garantiza	das	Medi	da	Garantizada	
110	-/17/	/ -	250			151,0	121.0		0,2326	5%	1,000 %	
90	-/17/	-	250			72,66	131,0		0,0485	2 % 9 %	0,07000 %	
Pérdidas en	Carga y	Tens	ión de C	ortoc	ircuit	to	1		.,			
Terminales		Tensi	ones	Desis	incun	Potencia	Pérdidas a	a Tem	p. Ref.	Imped	ancia a Temp. Ref.	
I er minales		(kV	0	Posic	tones	(MVA)	Medidas (kW)	Gar	antizadas (kW)	Medid: (%)	a Garantizada (%)	
H1-H2-H3-H X1-X2-X3 Y1-Y2-Y3	0 2	220 / 3	3 / 33	9/	-/-	150	271,75			7,57		
H1-H2-H3-H X1-X2-X3 Y1-Y2-Y3	0 2	220 / 3	3 / 33	9/	-/-	250	758,87	9	04,00	12,62		
H1-H2-H3-H X1-X2-X3	0	242 /	33	1	/-	125	358,25			12,09	12,60	
H1-H2-H3-H X1-X2-X3	0	220 /	33	9	/-	125	368,86			11,82	12,20	
H1-H2-H3-H X1-X2-X3	0	198/	/ 33	17	/-	125	398,83			11,73	12,10	
H1-H2-H3-H Y1-Y2-Y3	0	242 /	/ 33	1	/-	125	364,07			12,23	12,60	
H1-H2-H3-H Y1-Y2-Y3	0	220 /	/ 33	9	/-	125	369,56			11,95	12,20	
H1-H2-H3-H Y1-Y2-Y3	0	198/	/ 33	17	/-	125	394,07			11,85	12,10	
X1-X2-X3 Y1-Y2-Y3		33 /	33	- /	/ -	125	720,58			22,34		
Pérdidas To	tales											
Terminales		Tensi	ones	Posic	iones	Potencia Base	Pérdidas a Medidas	Tem Gar	p. Ref. antizadas			
H1-H2-H3-H X1-X2-X3	0 2	220 / 3	3 / 33	9/	-/-	(MVA) 250	(kW) 855,25		(kW) 1072			
<u>Y1-Y2-Y3</u>												
<u> </u> 26	Fecha: -abr-2021			Ir	ngenie Roł	ero de Ens oson Monte	<u>sayo:</u> s		Departar	nento d PGTR	e Ensayo:	

ANEXO III DATASHEET INVERSOR Y CONSUMOS AUXILIARES

La información técnica de inversores y centros de transformación del tipo MVPS 4600-S2 entregada por el fabricante en el documento [5], se presenta a continuación:

DOCUMENTATION	Project Diego del Almagro
Order Number	516-3005766
SAP Number	676953
Project Name	Diego del Almagro (Chile) - 1
Customer	Colbun
Change Proposal Number	1267
Station Serial Number	CT 422/20

Installed N	Installed Main Components							
Number	Name	Component						
1	MVT	4140 kVA 33/0.69 kV KNAN hermetically sealed liquid						
		immersed transformer (SBG)						
2	INV	Central Inverter SC 4600-UP						
3	BW	Low Voltage Busbar/Busway between inverter and transformer						
4	MVSG	Medium Voltage Ring Main Unit Switchgear						
		SIEMENS 8DJH RRL with Circuit breaker						
5	MVC	3 x Medium Voltage Cable N2XS(F)2Y 18/30kV 70mm ² between transformer						
		and Medium Voltage Switchgear						
6	STSD	230V 50 Hz low voltage distribution panel						
7	SCAS-P	Low voltage cable from BW to fuse holder for installation of auxiliary power						
		supply						

Power Class	:			MVPS-4200-S2-US-10
Target Country	:	CL	\rightarrow	Chile
Inverter type	:	0	\rightarrow	SC UP
Inverter Power	:	3	\rightarrow	4600 kVA
Ambient Temperature	:	1	\rightarrow	-25°C to +55°C
Altitude	1	1	\rightarrow	1001 - 2000 m
Environment	:	0	\rightarrow	Standard
MV Transformer	1	1	\rightarrow	KNAN
Transformer Protection	1	1	\rightarrow	Full Protection
Nominal Voltage	1	Н	\rightarrow	33 kV
Nominal Frequency	:	0	\rightarrow	50 Hz
Transformer Vector Group	1	0	\rightarrow	Dy11
Transformer Tap Changer	1	1	\rightarrow	With
Transformer Shield Winding	1	0	\rightarrow	Without
Transformer Load Profile	1	6	\rightarrow	24 Hours
Transformer Losses	:	1	\rightarrow	Eco Design 1
Oil Containment	1	1	\rightarrow	With
MV Switchgear	1	2	\rightarrow	3F-SD-SD-CB-36 kV
Accessories MV Switchgear	1	1	\rightarrow	Auxiliary Contacts
LV-Transformer	:	2	\rightarrow	20 kVA, 400 V
Safety Equipment	1	0	\rightarrow	Without
Monitoring	1	1	\rightarrow	MVSG
Cable Entry Kit	1	1	\rightarrow	With
Transport Packaging	:	1	\rightarrow	Sea Freight
Country Package	:	0	\rightarrow	Without
Language	:	ES	\rightarrow	Spanish
Factory Warranty	:	0	\rightarrow	1 year
Customized Solution	:	1	\rightarrow	Yes

SMA Sol Somenalie MEDIU	er Technology A te 1, 34266 Niestet IM VOLTAGE	al, Germany POWER STATION		SMA	
		SERIAL NUMBER	CT1021/20	MANUFACTURER	CEP S.R.L.
MODEL	MVP5-4600-52-10	SPECIFICATION	D_00150055_01	CHANGE PROPOSAL	CP1267
DESIGNATION	MVPS 45.36-K2	FABRICATION DATE	11/20	FABRICATION VERSION	Q1
CONSTRUCTION	mais	STATE OF COSTRUCTION	SOC 02		
	NOMINAL OUT	PUT VOLTAGE AC (3 PHASE 3 WIRE)	33 kV	FREQUENCY	50 Hz
	MAX CONTINO	US OUTPUT CURRENT AC	80.5 A	NOMINAL OPERATION TEMPERATURE RANGE	-25+45*C
	MAX CONTING	OUS OUTPUT POWER AC @25°C	4600 kVA	OUTPUT POWER DERATING @40°C	3910 kVA
	SYSTEM (NO.	PHASES / VECTOR GROUP MV)	3 /DELTA	INTERNAL ARC CLASSIFICATION	A 20kA 1s
NOTE FOR FUR		SEE NAMEPLATES OF INVERTERS A	ND MY SWITCHGE	AR	
	LA ME	DIUM VOLTAGE POWER STATION EST	CONFORME A LA N	IORME CEI 62271-202	6

Figura 6.1: Placa de datos Centro de trasnformación tipo MVPS-4600 S2- PFV Diego de Almagro Sur.

Respecto al consumo de servicio auxiliares de cada centro de transformación, el fabricante en el documento [6], indica lo siguiente: "El inversor convierte la energía de CC a CA, lo que requiere algo de energía auxiliar para el sistema de control, comunicación y enfriamiento. La cantidad de energía auxiliar depende de la temperatura ambiente y de la potencia de salida producida. La alimentación auxiliar se extrae del lado de CA en los terminales del inversor.

Si la potencia fotovoltaica disponible supera el 100 % de la potencia de CC que puede convertir el inversor según el valor nominal de la placa de datos, el inversor produce algo más de potencia de CA para compensar sus pérdidas internas. De esta forma el consumo auxiliar efectivo del inversor es de 0 kVA en cuanto la potencia DC supera el 100%."

Figura 6.2: Consumo de servicios auxiliares en un día soleado [5].

Figura 6.3: Consumo de servicios auxiliares en un día noublado [5].

ANEXO IV DATASHEET DE LOS PANELES SOLARES

THE ertex **BIFACIAL DUAL GLASS MONOCRYSTALLINE MODULE**

500W+ MAXIMUM POWER OUTPUT

21.0%

MAXIMUM EFFICIENCY

)~+5₩ **POSITIVE POWER TOLERANCE**

Founded in 1997, Trina Solar is the world's leading total solution provider for solar energy. With local presence around the globa, Trina Solaris able to provide exceptional service to each customer in each market and deliver our innovative, reliable products with the backing of Trina as a strong, bankable brand. Trina Solar now distributes its PV conclose brand. This a sour new distributes in SPV products to over 100 countries all over the world. We are committed to building strategic, mutually beneficial collaborations with installers, developers, distributors and other partners in driving smart energy together.

Comprehensive Products and System Certificates IEC61215/IEC61730/IEC61701/IEC62716/UL1703 ISO 9001: Quality Management System ISO 14001: Environmental Management System 15014064: Greenhouse Gases Emissio ns Verification ISO45001: Occupational Health and Safety Hanagement System

 Lower LCOE (Levelized Cost Of Energy), reduced BOS (Balance of System) cost, shorter payback time

- Lowest guaranteed first year and annual degradation; extended 30-year warranty
- Designed for compatibility with existing mainstream system components
- Higher return on Investment

High power up to 505W

- Large area cells based on 210mm silicon wafers and 1/3-cut cell technology
- Up to 21.0% module efficiency with high density interconnect technology
- Multi-busbar technology for better light trapping effect, lower series resistance and improved current collection

High reliability

- Minimized micro-cracks with innovative non-destructive cutting technology
- Ensured PID resistance through cell process and module material control
- Resistant to harsh environments such as salt, ammonia, sand, high temperature and high humidity areas
- Mechanical performance up to 5400 Pa positive load and 2400 Pa negative load
- Certificated to fire class A

High energy yield

- Excellent IAM (Incident Angle Modifier) and low irradiation performance, validated by 3rd party certifications
- The unique design provides optimized energy production under inter-row shading conditions
- Lower temperature coefficient (-0.35%) and operating temperature
- Up to 25% additional power gain from back side depending on albedo

Vertex

** 8-8 I-V CURVES OF PV MODULE(490 W)

241

35.0

P-V CURVES OF PV MODULE(490W)

BIFACIAL DUAL GLASS MONOCRYSTALLINE MODULE

ELBCTRICAL DATA (STC)								
Peak PowerWatts-Pwx (Wp)*	475	480	485	490	495	500	505	
Power Output Tolerance-Pwx (W)	0 * +5							
Maximum PowerVoltage-Vam (V)	41.9	42.2	42.5	42.8	43.1	43.4	43.7	
Maximum Power Current-Iwe (A)	11.34	11.38	11.42	11.45	11.49	11.53	11.56	
Open Circuit Voltage-Vox (V)	50.5	50.7	50.9	51.1	51.3	51.5	51.7	
Short Circuit Current-Isc (A)	11.93	11.97	12.01	12.05	12.09	12.13	12.17	
Module Efficiency η « (%)	197	19.9	20.1	20.3	20.5	20.7	21.0	
STC:Imediance1000W/m*. Cell Tempenthure 2	D*C Air Mean A	ML 5.						

uring tolerance: 121%.

Electrical characteristics with different power bin (reference to 10% Irradiance ratio)										
Total Equivalent power -Pwx (Wp)	508	514	519	524	530	535	540			

Maximum Power Voltage-Vw# (V)	41.9	42.2	42.5	42.8	43.1	43.4	43.7	
Maximum Power Current-INP (A)	12.13	1218	12.22	12.24	12.29	12.34	12.37	
Open Circuit Voltage-Voc (V)	50.5	50.7	50.9	51.1	51.3	51.5	51.7	
Short Circuit Current-Isc (A)	12.77	12.81	12.85	12.89	12.94	12.98	13.02	
irradiance ratio (rear/front)				10%				

ELECTRICAL DATA (NMOT)

Maximum Power-Pwx (Wp)	360	363	367	371	374	378	382	
Maximum Power Voltage-View (V)	39.5	39.8	40.0	40.2	40.5	40.8	41.0	
Maximum Power Current-Iwe (A)	9.09	9.13	9.18	9.21	925	9.28	9.33	
Open Circuit Voltage-Vec (V)	477	47.9	481	48.3	48.5	48.7	48.8	
Short Circuit Current-Isc (A)	9.61	9.64	9.67	9.70	9.73	9.77	9.80	

MMOT: Irrediance at 600W m*, Ambient Temperature 20*C, Wind Speed Im/a.

MECHANICA L DATA							
SolarCells	Monocrystalline						
No. of cells	150 cells						
Module Dimensions	2187×1102×35 mm (86.10×43.39×1.38 inches)						
Weight	30.1 kg (66.4 lb)						
Front Glass	2.0 mm (0.08 inches), High Transmission, AR Coated Heat Strengthened Glass						
Encapsulant material	POE/EVA						
Back Glass	2.0 mm (0.08 inches), Heat Strengthened Glass (White Grid Glass)						
Frame	35mm(1.38 inches) A nodized Aluminium Alloy						
j-Box	IP 68 rated						
Cables	Photovoitaic Technology Cable 4.0mm² (0.006 inches²), Portrait: 280/280 mm(11.02/11.02 inches) Landscape: 2000/2000 mm(78.74/78.74 inches)						
Connector	MC4 EV02/ TS4*						
"Plaze refer to regional datasheet fo	rapactilad connector.						
TEMPERATURE RATINGS	MAXIMUM RATINGS						

Operational Temperature

Maximum SystemVoltage Max Series Fuse Rating

PACKAGING CONFIGURATION

Modulesperbox: 30 pieces Modules per 40' container: 600 pieces

TEMPERATURE RATINGS						
41°C(±3°C)						
- 0.35%6/°C						
- 0.25%/°C						
0.04%/°C						

(Do not cannect Fuse in Combiner Bo with two or mane strings in paralle

WARRANTY 12 year Product Workmanship Warranty 30 year Power Warranty 2% first year degradation 0.45% Annual Power Atter

(Please refer to product warranty for datails)

CAUTION: READ SAFETY AND INSTALLATION INSTRUCTIONS BEFORE USING THE PRODUCT. © 2020 Trina Solar Limited. All rights reserved. Specifications included in this datasheet are subject to change without notice. Version number: TSM_EN_2020_A www.trinasolar.com

-40~+85°C 1500V DC (IBC)

204

ANEXO V DETERMINACIÓN DE POTENCIA MÁXIMA DEL PFV DIEGO DE ALMAGRO SUR MEDIANTE SIMULACIÓN

De forma adicional a lo elaborado en el presente informe, se determina la potencia máxima de la planta fotovoltaica utilizando un modelo en el software *PVSyst 7.2*, el cual considera en forma detallada el comportamiento de los módulos fotovoltaicos e inversores. Con dicho modelo es posible identificar a través de una curva ordenada de mayor a menor, la potencia del sistema fotovoltaico a diferentes horas del día durante todo el año.

Los modelos desarrollados en *PVSyst* de los módulos fotovoltaicos e inversores permiten evaluar de forma detallada el comportamiento de estos, debido a que utilizan una parametrización no lineal y dependen de diferentes parámetros ambientales. Las condiciones de operación del campo solar a diferentes horas del día varían, afectando a los módulos fotovoltaicos debido a la temperatura, la radiación solar, el viento y otros parámetros, por lo que resulta necesario considerar todos estos efectos simultáneamente. Además, debido a las distintas condiciones operacionales de los inversores, se amerita realizar simulaciones con los diferentes parámetros hora a hora para calcular el comportamiento de la planta y obtener las condiciones donde la planta produce la máxima potencia durante el año.

Para ello, se utilizaron tres tipos de bases de datos independientes, que fueron corroboradas con datos reales medidos en el lugar durante el año 2020. A continuación, se presenta un resumen de la radiación solar global en plano horizontal (GHI) para comparar las bases de datos.

GHI	Mediciones 2020	Explorador Solar	Solargis	Meteonorm
Mes	kWh/m ²	kWh/m ²	kWh/m²	kWh/m²
enero	275,0	287,1	279,4	275,7
febrero	243,9	240,4	236,1	229,8
marzo	225,0	233,9	228,5	224,8
abril	175,9	179,1	175,4	176,3
mayo	144,8	141,6	142,7	137,1
junio	115,8	123,9	122,6	122,7
julio	141,2	140,5	135,3	135,6
agosto	171,7	173,7	168,9	168,6
septiembre	208,5	209,2	204,7	206,1
octubre	253,2	256,7	252,1	248,1
noviembre	274,5	277,8	272,8	268,8
diciembre	292,0	296,9	290,1	288,1
Anual	2521,7	2560,8	2508,6	2481,7

Tabla 6.1: Registros de irradiancia en la zona de emplazamiento PFV Diego Almagro de Sur de diferentes fuentes de información.

A continuación, se muestran los parámetros de simulación para las diferentes bases de datos:

Curva ordenada de generación AC en baja tensión

Figura 6.5: Resultado de simulación de la potencia total de salida de los inversores en la PFV Diego de Almagro Sur con la base de datos SOLARGIS

250000

200000

Potencia [kW] 100000

Curva ordenada de generación AC en baja tensión Explorador Solar Potencia salida: 211,6 MW GI:1190,6 W/m2

Figura 6.6: Resultado de simulación de la potencia total de salida de los inversores en la PFV Diego de Almagro Sur con la base de datos del Explorador Solar del Ministerio de Energía de Chile

Como se observa, la potencia bruta total es igual en todas las simulaciones y tiene el valor de 211,6 MW. Las pérdidas en el inversor y servicios auxiliares ya están incluidas en los modelos de los inversores, por lo que la potencia corresponde a la potencia total inyectada en baja tensión (0,69 kV CA).

ANEXO VI ESPECIFICACIONES INSTRUMENTOS DE MEDICIÓN

SPECIFICATIONS					
Voltage Inputs	4 channels, 600VAC CAT IV, 1000VAC CAT III				
Current Channels	4 channels				
Voltage output CTs (0-10V peak)					
Line Frequency 40-70Hz					
Waveform Sampling	256 Sample/Cycle at 50/60Hz				
Measurements	Continuous PQZ file				
Accuracy	IEC 61000-4-30 Class A				
LED Indicators	11 Bi-color LEDs				
	COMMUNICATION				
USB PQZ file download, FW upgrade & clock setting					
LAN	Available in extension module				
	POWER				
Power Supply	100-240VAC 50/60Hz 10W				
	5VDC over USB				
Battery	Available in extension module				
Ride through	15sec				
	MECHANICAL				
Operating Temperature	-20 to + 65 °C (*)				
Humidity	5% to 95% non-condensing				
Maximum Operation Altitude	2,000m (1.24Mi)				
IP protection	IP 40 (**)				
Weight	0.4kg				
Dimensions	180 x 115 x 60				
	STORAGE				
Nonvolatile memory	SD card supporting hot swap				
SYNCHRONIZATION					
Internal clock 10 ppm					
External synchronization	NTP available in extension module				

Figura 6.8: Datasheet instrumento de medida PURE BlackBox marca Elspec [3].

Waveform Sampling							
Voltage Sampling Rate		1024 Samples/Cycle					
Current Sampling Rate		256 Samples/Cycle					
Voltage Harmonics (Individual, Eve	en, Odd, Total) Up to -	511 th					
Current Harmonics (Individual, Eve	en, Odd, Total) Up to -	127 th					
Type of Analog to Digital Converte	r	16/20 ¹ bit					
	Sto	orage Capacity					
Internal Memory		32 GB/32TB ²					
	Powe	r Quality Analysis					
ransient Detection, Microseconds	(50Hz/60Hz)	19.5/16.3µs					
	Com	munication Ports					
Ethernet Ports		3					
Wi-Fi Communications (802.11g)		1					
Power Over Ethernet (PoE- Out)		1					
Digital Input		4					
RS-232		1					
RS-485		1					
		Physical					
Dimensions mm		314 X 84 X 271					
Weight		3.7kg					
		Control					
Comprehensive web server for loc	al and remote real-time monitoring a	nd control					
	Appl	icable Standards					
Measurement Standards		EN50160, IEEE1159, IEEE519, IEC61000-4-15, IEC61000-4-7, IEC61000-4-30 Class A					
EMC Standards		EN61326, CFR47FCC, CISPR11 Group 1, FCC PART 15 Subpart B, EN61010-2, IEC61000-3-3, IEC61000-4-2, IEC61000-4-3, IEC61000-4-4, IEC61000-4-5, IEC61000-4-6, IEC61000-4-11					
Environmental Standards		IEC60068-2-1, 2, 6, 27, 30, 75					
Safety Standards		EN61010-1:2001 2nd Edition					
Powe	r Supply		Voltage				
Operating Range	100-260 VAC: 50/60 Hz 100-300	Voltage Channels	4 (3 Phases + Neut.)+ 1 DC				
	VDC	Nominal Full Scale	1000V				
Auxiliary DC Supply	48 Vdc	Maximum Peak Measurement	8000V				
Auxiliary Supply	PoE In According to 802.3af	Input Impedance	3MΩ				
Battery Backup	2 Hours	Uncertainty 0.1% of Nominal					
Time			Current				
Real Time Clock	±1 Second per 24 Hours	Current Channels	4 (3 Phases + Neut.)+ 1Grn/DC				
Synchronization Device	Uncertainty	Current Channels Receive	11.14: 0.10 VPk IS: 0.3 VPk				
GPS	100-200µs	From Clamp	TITEL OF TO VER ID: UPD VER				
IRIG B	100-200µs	Uncertainty 0.1%±0.1 mV					
SNTP Server	50-100µs	Frequency					
DCF-77	±15ms	Fundamental Frequency	42.5 Hz to 69 Hz				
Environmental Conditions		Frequency Resolution	10 mHz				
Operation Temperature	0°C – 50°C (32°F – 122 °F)	Frequency Accuracy	±10 mHz				
Storage Temperature	-20°C - 60°C (-4°F - 140 °F)	Disclaimer: Specifications subject to chan	ges without prior notice				

¹ Effective bits ² Equivalent memory size needed without compression

Figura 6.9: Datasheet instrumento de medida G4500 marca Elspec [4].

Certificado de calibración

G4K Calibration Test-Test Report										
		Date & T	ime: 24/01/2022 12:37:44.115	Doron Total Test Time: 01:48:24						
UUT Path: G4000K SYSTEM\Cal. Test \G4K Calibration Test			SYSTEM\Cal. Test \G4K Calibration Test	Serial Number: 00-60-	lumber: 00-60-35-33-66-C0			Batch Number: 13		
UUT Type:			UUT Type:		G4500					
			UUT S/N:		00-60-35-33-66-C0					
BOOT Version				0.3.02						
			Application Version		0.4.11.73					
			DSP SW Version		5.6					
No	Stage	Module	Test Type	Measured Parameter	Spec Low	Spec High	Result	Pass/Fail	Time	
2				Log In	Pass	-	Pass	4	24/01/2022 12:37:44.115	
3	Stage1	G4 System	Unit Type	CPU Version	G4500	-	G4500	1	24/01/2022 12:38:06.411	
4	Stage1	G4 System	Unit Clamps Types	Channel:1 Clamp Type	Mini_1To6A_1A_0.1V	-	Mini_1To6A_1A_0.1V	4	24/01/2022 12:38:23.789	
5	Stage1	G4 System	Unit Clamps Types	Channel:2 Clamp Type	Mini_1To6A_1A_0.1V	-	Mini_1To6A_1A_0.1V	4	24/01/2022 12:38:23.904	
6	Stage1	G4 System	Unit Clamps Types	Channel:3 Clamp Type	Mini_1To6A_1A_0.1V	-	Mini_1To6A_1A_0.1V	4	24/01/2022 12:38:24.021	
7	Stage1	G4 System	Unit Clamps Types	Channel:4 Clamp Type	Mini_1To6A_1A_0.1V	-	Mini_1To6A_1A_0.1V	4	24/01/2022 12:38:24.138	
8	Stage1	DSP Module	Current Calibration	I_To_V_Direction_Read ch:1	5	1000000	1752.115845	4	24/01/2022 12:39:27.187	
9	Stage1	DSP Module	Current Calibration Low Range ch1	Calibration Value: 0.3	Pass	-	Pass	*	24/01/2022 12:41:48.272	
10	Stage1	DSP Module	Current Calibration Low Range ch1	I1_LowMult_Read	9	11	10.164402	4	24/01/2022 12:41:48.938	
11	Stage1	DSP Module	Current Calibration Low Range ch1	I1_Value_Read	0.2997	0.3003	0.300034	4	24/01/2022 12:41:49.085	
12	Stage1	DSP Module	Current Calibration	I_To_V_Direction_Read ch:2	5	1000000	1043.846191	*	24/01/2022 12:42:52.123	
13	Stage1	DSP Module	Current Calibration Low Range ch2	Calibration Value: 0.3	Pass	-	Pass	1	24/01/2022 12:45:14.230	
14	Stage1	DSP Module	Current Calibration Low Range ch2	I2_LowMult_Read	9	11	10.138845	4	24/01/2022 12:45:15.021	
15	Stage1	DSP Module	Current Calibration Low Range ch2	I2_Value_Read	0.2997	0.3003	0.299999	4	24/01/2022 12:45:15.129	
16	Stage1	DSP Module	Current Calibration	I_To_V_Direction_Read ch:3	5	1000000	104.155762	4	24/01/2022 12:46:18.182	
17	Stage1	DSP Module	Current Calibration Low Range ch3	Calibration Value: 0.3	Pass	-	Pass	1	24/01/2022 12:48:40.840	
18	Stage1	DSP Module	Current Calibration Low Range ch3	I3_LowMult_Read	9	11	10.148255	4	24/01/2022 12:48:41.570	
19	Stage1	DSP Module	Current Calibration Low Range ch3	I3_Value_Read	0.2997	0.3003	0.299994	4	24/01/2022 12:48:41.681	
20	Stage1	DSP Module	Current Calibration	I_To_V_Direction_Read ch:N	5	1000000	68.939598	4	24/01/2022 12:49:44.756	
21	Stage1	DSP Module	Current Calibration Low Range ch4	Calibration Value: 0.3	Pass	-	Pass	4	24/01/2022 12:52:07.552	
22	Stage1	DSP Module	Current Calibration Low Range ch4	In_LowMult_Read	9	11	10.136033	4	24/01/2022 12:52:08.228	
23	Stage1	DSP Module	Current Calibration Low Range ch4	In_Value_Read	0.2997	0.3003	0.30004	4	24/01/2022 12:52:08.332	
24	Stage1	G4 System	Unit Clamps Types	Channel:1 Clamp Type	Mini_1To6A_1A_0.1V	-	Mini_1To6A_1A_0.1V	4	24/01/2022 12:52:10.254	
25	Stage1	G4 System	Unit Clamps Types	Channel:2 Clamp Type	Mini_1To6A_1A_0.1V	-	Mini_1To6A_1A_0.1V	4	24/01/2022 12:52:10.363	
26	Stage1	G4 System	Unit Clamps Types	Channel:3 Clamp Type	Mini_1To6A_1A_0.1V	-	Mini_1To6A_1A_0.1V	*	24/01/2022 12:52:10.473	
27	Stage1	G4 System	Unit Clamps Types	Channel:4 Clamp Type	Mini_1To6A_1A_0.1V	-	Mini_1To6A_1A_0.1V	4	24/01/2022 12:52:10.583	
28	Stage1	DSP Module	Current Calibration	I_To_V_Direction_Read ch:1	5	1000000	680.33374	4	24/01/2022 12:53:13.576	
29	Stage1	DSP Module	Current Calibration High Range ch1	Calibration Value: 3	Pass	-	Pass	1	24/01/2022 12:55:41.111	

Page 1 of 2

-									
30	Stage1	DSP Module	Current Calibration High Range ch1	I1_HighMult_Read	90	110	101.354347	1	24/01/2022 12:55:41.800
31	Stage1	DSP Module	Current Calibration High Range ch1	I1_Value_Read	2.97	3.03	3.000008	4	24/01/2022 12:55:41.917
32	Stage1	DSP Module	Current Calibration	I_To_V_Direction_Read ch:2	5	1000000	689.693542		24/01/2022 12:56:44.928
33	Stage1	DSP Module	Current Calibration High Range ch2	Calibration Value: 3	Pass	-	Pass	4	24/01/2022 12:59:07.698
34	Stage1	DSP Module	Current Calibration High Range ch2	I2_HighMult_Read	90	110	101.134651	4	24/01/2022 12:59:08.480
35	Stage1	DSP Module	Current Calibration High Range ch2	I2_Value_Read	2.97	3.03	2.999982	4	24/01/2022 12:59:08.596
36	Stage1	DSP Module	Current Calibration	I_To_V_Direction_Read ch:3	5	1000000	689.487183	4	24/01/2022 13:00:11.667
37	Stage1	DSP Module	Current Calibration High Range ch3	Calibration Value: 3	Pass	-	Pass	4	24/01/2022 13:02:35.963
38	Stage1	DSP Module	Current Calibration High Range ch3	I3_HighMult_Read	90	110	101.230629	4	24/01/2022 13:02:36.587
39	Stage1	DSP Module	Current Calibration High Range ch3	I3_Value_Read	2.97	3.03	2.999994	4	24/01/2022 13:02:36.714
40	Stage1	DSP Module	Current Calibration	I_To_V_Direction_Read ch:N	5	1000000	689.660522	4	24/01/2022 13:03:39.691
41	Stage1	DSP Module	Current Calibration High Range ch4	Calibration Value: 3	Pass	-	Pass	4	24/01/2022 13:06:03.334
42	Stage1	DSP Module	Current Calibration High Range ch4	In_HighMult_Read	90	110	101.050255	*	24/01/2022 13:06:04.030
43	Stage1	DSP Module	Current Calibration High Range ch4	In_Value_Read	2.97	3.03	3.000028	4	24/01/2022 13:06:04.145
44									24/01/2022 13:06:04.506
45	Stage1	DSP Module	Test Total Time	-	-	-	00:27:55	-	24/01/2022 13:06:05.049
46									24/01/2022 13:06:05.155
47				Log In	Pass	-	Pass	4	24/01/2022 13:09:12.959
48				Log In	Pass	-	Pass	4	24/01/2022 13:56:33.717
49				Log In	Pass	-	Pass	-	24/01/2022 14:07:33.515
50									24/01/2022 14:25:54.158
51	Stage1	All Modules	Test Total Time	-	-	-	01:48:24	-	24/01/2022 14:25:54.621
52									24/01/2022 14:25:54.713
					Doro	n Arussi			

G4K Calibration Pass

Signature Practical electric engineer

Page 2 of 2

ANEXO VII ARCHIVOS ADJUNTOS

Anexo a este informe se encuentran los siguientes archivos adjuntos:

- ANEXO 1 Potencia activa 52J1 52FT11 y 52FT12 SE Inca de Oro.xlsx: contiene las mediciones de potencia activa en los paños 52J1, 52FT11 y 52FT12 de la SE Inca de Oro.
- ANEXO 2 Irradiancia y temperatura PFV Diego de Almagro Sur.xlsx: contiene los registros de irradiancia y temperatura panel medidos en el CT12.
- ANEXO 3 SS.AA. Potencia máxima.xlsx: contiene las mediciones de potencia activa en los servicios auxiliares (400V) de la SE Inca de Oro y respectivo cálculo del promedio de los consumos durante la prueba de potencia máxima.
- ANEXO 4 BD Pmax-PFV Diego de Almagro Sur.pfd, contiene el modelo desarrollado en software Power Factory Digsilent.
- ANEXO 5 Registro Irradiancia histórico PFV DAS.xlsx, contiene el registro histórico de irradiancia medido en la zona de emplazamiento del PFV Diego de Almagro Sur.
- ANEXO 6 Technical Information SC UP(-US)_V3.0.pdf, contiene la información técnica entregada por el fabricante de los inversores SMA.
- ANEXO 7 Curva irradiancia-potencia informe potencia máxima.xlsx

