Empresa: AES Andes

País: Chile

Proyecto: Parque Eólico Mesamávida - Etapa II

Descripción: Informe de Mínimo Técnico

Código de Proyecto: EE-2020-213

Código de Informe: EE-EN-2022-1242

Revisión: B

aes Andes | aes Chile

28 de noviembre de 2022

Este documento EE-EN-2022-1242-RB fue preparado para AES Andes por Estudios Eléctricos. Para consultas técnicas respecto del contenido del presente comunicarse con:

Ing. Claudio Celman

Coordinador Dpto. Ensayos claudio.celman@estudios-electricos.com

Ing. Andrés Capalbo

Coordinador Dpto. Ensayos andres.capalbo@estudios-electricos.com

Ing. Pablo Rifrani

Gerente Dpto. Ensayos pablo.rifrani@estudios-electricos.com

www.estudios-electricos.com

Este documento contiene 29 páginas y ha sido guardado por última vez el 01/12/2022 por César Colignon, sus versiones y firmantes digitales se indican a continuación:

Rev	Fecha	Comentarios	Realizó	Revisó	Aprobó
А	28/11/2022	Para presentar.	IC/CiC	AC	PR
В	1/12/2022	Correcciones según observaciones de AES Andes.	CiC	AC	PR

Todas las firmas digitales pueden ser validadas y autentificadas a través de la web de Estudios Eléctricos; http://www.estudios-electricos.com/certificados.

Índice

1	INT	RODUCCIÓN	4
	1.1	Fecha ensayo y personal auditor	4
	1.2	Medidores utilizados	4
	1.3	Definiciones y Nomenclatura	5
2	ASF	PECTOS NORMATIVOS	7
3	DES	SCRIPCIÓN DEL PARQUE	8
	3.1	Unifilar de planta	8
	3.2	Datos de los aerogeneradores	14
	3.3	Datos de los transformadores de bloque	16
	3.4	Datos del transformador de poder	17
	3.5	Datos de consumos de SSAA de planta	18
4	DE	TERMINACIÓN DEL MÍNIMO TÉCNICO	. 19
	4.1	Mínimo Técnico considerando sólo un aerogenerador en servicio	20
	4	.1.1 Potencia Bruta	21
	4	.1.2 Potencia de Servicios Auxiliares	21
	4	.1.3 Potencia de Pérdidas en la central	22
	4	.1.4 Potencia Neta	23
	4	.1.5 Resultados	23
	4.2	Mínimo Técnico con el parque completamente operativo	24
	4	.2.1 Potencia Bruta	25
	4	.2.2 Potencia de Servicios Auxiliares	25
	4	.2.3 Potencia de Pérdidas en la central	26
	4	.2.4 Potencia Neta	27
	4	.2.5 Resultados	27
5	СО	NCLUSIONES	. 28

1 INTRODUCCIÓN

El presente Informe Técnico documenta el procedimiento y los resultados obtenidos al determinar el Mínimo Técnico del Parque Eólico Mesamávida de acuerdo con lo establecido en el "Anexo Técnico: Determinación de Mínimo Técnico en Unidades Generadoras", cuyos aspectos más relevantes se destacan en la Sección 2.

El Parque Eólico Mesamávida se ubica en la región del Biobío, emplazado en la comuna de Los Ángeles, y tiene en su segunda etapa una potencia instalada de 62.4 MW distribuida en 13 aerogeneradores. Una etapa posterior considera la instalación de un aerogenerador adicional para totalizar 14 aerogeneradores como condición final, esto se describe en la carta del CEN: "DE0231-22".

El parque se vincula al SEN mediante un transformador elevador de relación 33 kV / 154 kV (\pm 12 \times 1.25%) y 60/80 MVA (ONAN/ONAF) de potencia aparente nominal. El lado de 154 kV del transformador de poder corresponde al punto de interconexión (POI) del parque con el SEN.

1.1 Fecha ensayo y personal auditor

Personal	Fecha de ensayo
Ing. César Colignon	21 de noviembre de 2022

1.2 Medidores utilizados

Se cuenta con datos del sistema controlador de planta adquiridos mediante el SCADA de la central y medidas de todos los aerogeneradores con una tasa de muestreo de 1 segundo.

1.3 Definiciones y Nomenclatura

La Figura 1.1, muestra un sistema equivalente de conexión de un parque eólico, el cual nos permite identificar y definir los siguientes elementos:

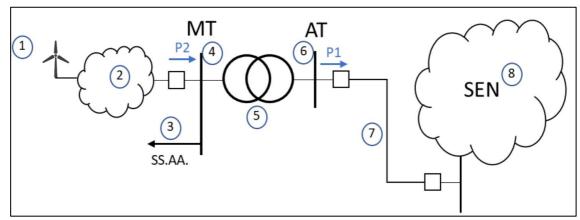


Figura 1.1 - Sistema equivalente parque eólico

- 1) **Generador equivalente:** Corresponde a la suma de los aportes distribuidos de potencia activa alterna de cada aerogenerador del parque eólico.
- 2) **Pérdidas en sistema colector del parque (Pcolector):** Corresponde a las pérdidas del sistema colector del parque eólico, principalmente en cables de baja y media tensión, y en los transformadores colectores que elevan de baja a media tensión.
- 3) Servicios Auxiliares de la central (SS.AA.).
- 4) Barra de media tensión (MT): Corresponde a la tensión en el lado de baja tensión del transformador de poder del parque eólico.
- 5) **Transformador de Poder:** Equipo elevador presente en la subestación de salida del parque eólico.
- 6) Barra de alta tensión (AT): Corresponde a la tensión en el lado de alta tensión del transformador de poder del parque eólico.
- 7) **Línea dedicada de la central:** Línea de alta tensión que vincula el parque eólico con el sistema eléctrico.
- 8) Sistema Eléctrico Nacional (SEN).

A partir de las definiciones anteriores, el presente informe considera la siguiente nomenclatura:

- ✓ **P1:** Potencia activa inyectada en la barra de alta tensión (AT) del parque [MW]. Este valor corresponde a la **Potencia Neta (Pneta)** del parque.
- ✓ P2: Potencia activa inyectada en la barra de media tensión (MT) del parque [MW].
- ✓ Pbruta: Suma de los aportes distribuidos de potencia activa inyectada por los aerogeneradores a nivel de baja tensión (BT) del parque [MW] (ver número "1" en Figura 1.1).
- ✓ Pperd: Pérdidas de potencia activa en línea de transmisión [kW] (ver número "7" en Figura 1.1).
- ✓ **Ptrafo:** Pérdidas activas en el transformador de poder del parque [kW].
- ✓ Pssaa: Potencia de Servicios Auxiliares del parque [kW].
- ✓ Pcolector: Pérdidas en el sistema colector del parque [kW] (ver número "2" en Figura 1.1).

2 ASPECTOS NORMATIVOS

El "Anexo Técnico: Determinación de Mínimo Técnico en Unidades Generadoras" establece cómo determinar e informar la potencia activa bruta mínima con la cual una unidad puede operar en forma permanente, segura y estable inyectando energía al sistema. Este mínimo deberá obedecer sólo a restricciones técnicas de operación de la unidad.

Se determinan valores de Mínimo Técnico, considerando distintas condiciones operativas del Parque Eólico Mesamávida, entre las que se distinguen los siguientes escenarios:

- Mínimo Técnico con el parque completamente operativo: valor de potencia activa bruta mínima con la cual el parque puede operar considerando todos los aerogeneradores y elementos de la red colectora en servicio y en condiciones de operación estables.
- Mínimo Técnico considerando sólo un aerogenerador en servicio: valor de potencia activa bruta mínima entregada por un único aerogenerador que permite tener el menor valor posible de potencia activa neta según las condiciones técnicas de los equipos.

3 DESCRIPCIÓN DEL PARQUE

El Parque Eólico Mesamávida, está constituido en su segunda etapa por 13 aerogeneradores NORDEX modelo Delta4000 de 4.8 MW de potencia nominal y 690 V de tensión de operación nominal. Una etapa posterior considera la instalación de un aerogenerador adicional para totalizar 14 aerogeneradores como condición final, esto se describe en la carta del CEN: "DE0231-22".

Cada aerogenerador cuenta con un transformador de bloque de 5.35 MVA (KFWF) y relación 0.69 kV / 30 kV (+ 4 x 2.5%), que interconecta la salida de cada aerogenerador con la red de MT.

La red colectora del Parque Eólico Mesamávida cuenta con 3 alimentadores en 33 kV que se conectan a la barra principal de 33 kV de la S/E Mesamávida. Luego, un transformador de poder de relación 33 kV / 154 kV (± 12 × 1.25%) y 60/80 MVA (ONAN/ONAF) de potencia aparente nominal permite la inyección de potencia generada al Sistema Eléctrico Nacional.

3.1 Unifilar de planta

La red interna de media tensión (MT) del parque se encuentra compuesta por 3 alimentadores en MT. La disposición de los aerogeneradores dentro de dichos circuitos es la siguiente:

- Circuito N°1: Aerogeneradores AE-01, AE-02, AE-03, AE-04 y AE-05.
- Circuito N°2: Aerogeneradores AE-06, AE-07, AE-09 y AE-10.
- Circuito N°3: Aerogeneradores AE-13, AE-14, AE-15 y AE-34bis (Etapa II).

En la Figura 3.1 se muestra el diagrama unilineal de la S/E Mesamávida. En tanto en la Figura 3.2 se muestra la barra principal de 33 kV del parque. Finalmente, entre la Figura 3.3 y Figura 3.5, se presenta el detalle de cada alimentador de 33 kV.

En la Etapa III del proyecto, el aerogenerador AE-12 será reubicado dentro del mismo circuito N°3 y su nombre pará a ser AE-43bis.

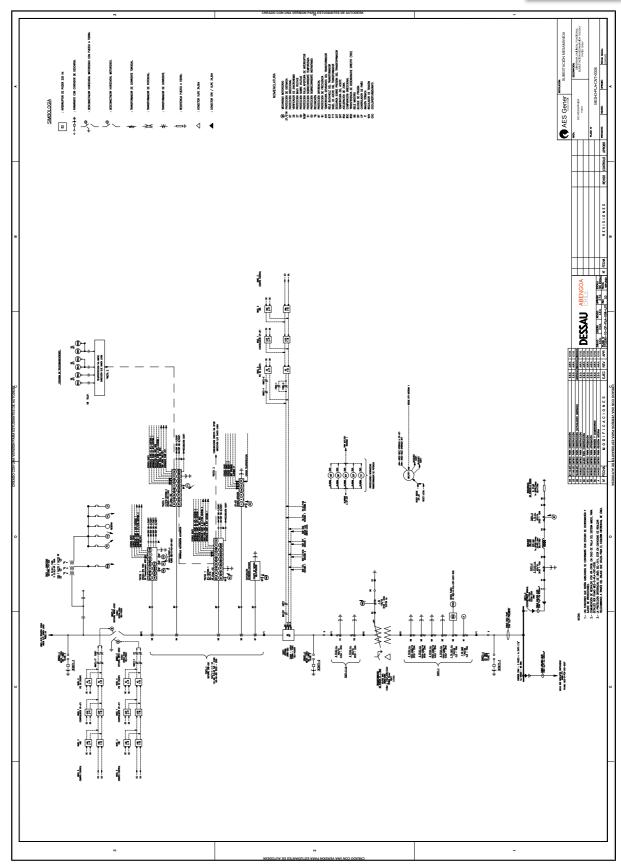


Figura 3.1 – Diagrama unilineal de S/E Mesamávida

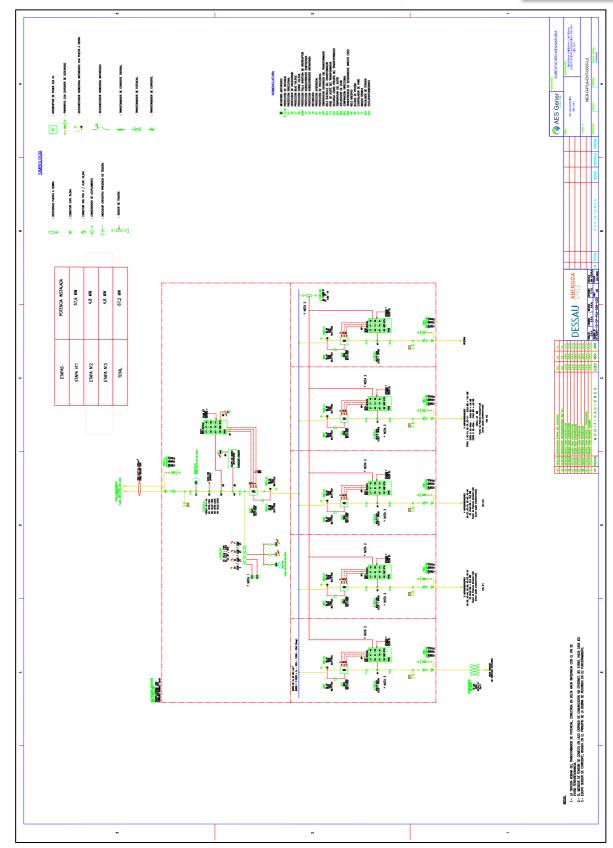


Figura 3.2 – Diagrama unilineal barra principal de 33 kV Parque Eólico Mesamávida

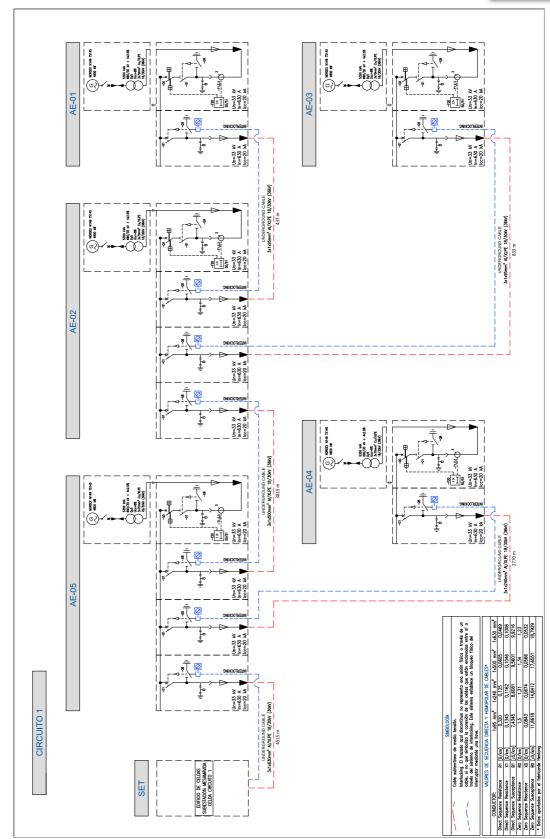


Figura 3.3 – Diagrama unilineal circuito colector 1

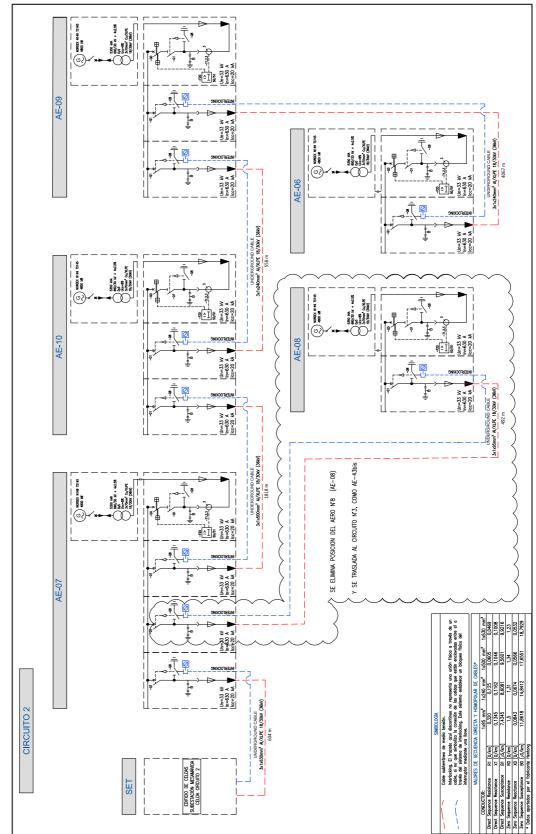


Figura 3.4 – Diagrama unilineal circuito colector 2

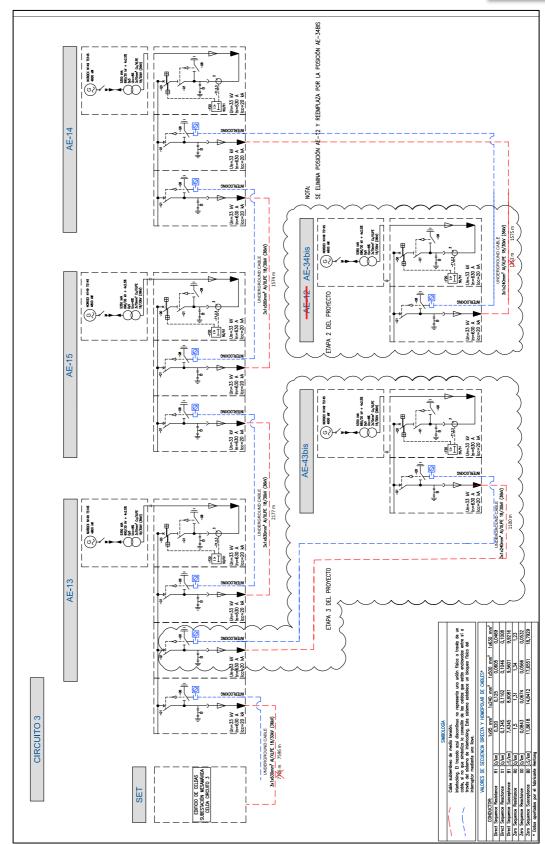


Figura 3.5 – Diagrama unilineal circuito colector 3

3.2 Datos de los aerogeneradores

El Parque Eólico Mesamávida, está constituido en esta segunda etapa por 13 aerogeneradores NORDEX modelo Delta400 de 4.8 MW de potencia nominal y 690 V de tensión de operación nominal. Los parámetros nominales se presentan en la Figura 3.6.

2.1 Electrical Operating Ranges Delta4000 WTs feature the following basic electrical operating ranges.						
WT Characteristic data Values						
	Nominal frequency	50 Hz	60 Hz			
Delta4000	Frequency operating range	47.5 Hz – 53.0 Hz continuously 47.0 Hz – 47.5 Hz for 5 min	57.0 Hz – 62.0 Hz continuously 62.0 Hz – 62.4 Hz for 30 mir 62.4 Hz – 62.5 Hz for 5 s			
	Frequency gradients	4 Hz/s continuously 8 Hz/s for 1 s				
	Nominal voltage (Unom)	660 V / 690 V				
N149/4.0-4.5	Voltage operating range	87 % U _{nom} - 115 % U _{nom}				
	Nominal active power P _{nom} (depending on power mode)	up to 4800 kW				
	Nominal voltage (Unom)	750 V				
N149/5.X	Voltage operating range	87 % U _{nom} - 115 % U _{nom}				
N163/5.X	Nominal active power P _{nom} (depending on power mode)		p to 5900 kW p to 5700 kW			

Figura 3.6 - Datos nominales de aerogeneradores

La curva de capacidad de los aerogeneradores se presenta en la Figura 3.7.

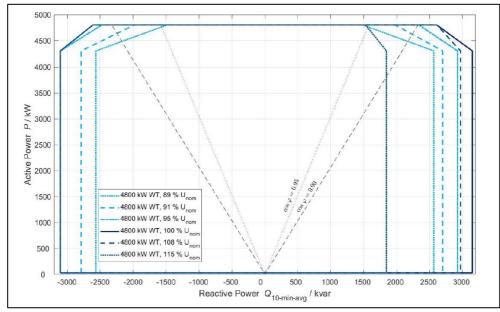


Figura 3.7 - Curva de capacidad del aerogenerador

Se presenta en la Figura 3.8 la curva de potencia según viento del aerogenerador.

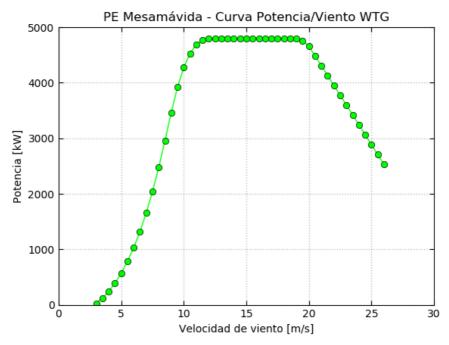


Figura 3.8 - Curva Viento/potencia para los grupos de aerogeneradores

Finalmente, se presentan en la Figura 3.9 antecedentes relacionados al consumo de potencia para alimentar los servicios auxiliares propios de la unidad. Se reporta un valor medio anual de aproximadamente 15 kW.

3.4 Auxiliary power of the wind turbine

The auxiliary low voltage required by the wind turbine in stand-by mode and feed-in mode is requested by the following consumers:

- · System control including main converter control
- 400 V/230 V auxiliary power of the main converter
- 230 V AC UPS supply including 24 V DC supply
- Yaw system
- Pitch system
- Auxiliary drives such as pumps, fans and lubrication units
- · Heating and lighting
- · Auxiliary systems such as service lift, obstacle lights

Long-term measurements show that the average base load (average active power) of the auxiliary low voltage system during WT feed-in operation mode is approx. 15 kW, based on one year. These values are already included in the power curves.

Figura 3.9 – Consumos internos de aerogeneradores

3.3 Datos de los transformadores de bloque

Cada aerogenerador se vincula a la red colectora de 33 kV mediante un transformador de 5.35 MVA de capacidad nominal, y de relación de transformación de 0.69/30 kV.

Los datos característicos de los transformadores de bloque se muestran en la Tabla 3.1.

Parámetro	Valor
Potencia Nominal	5.35 MVA
Refrigeración	KFWF
Tensión nominal lado HV	30 kV
Tensión nominal lado LV	0.69 kV
Grupo de conexión	Dyn11
Impedancia (HV-LV1 y HV-LV2)	9.23 %
Pérdidas en carga	60.116 kW
Pérdidas en vacío	2.84 kW
Posiciones de TAP	+4 x 2.5 %

Tabla 3.1 - Datos de los transformadores de bloque

3.4 Datos del transformador de poder

El Parque Eólico Mesamávida cuenta con un transformador de poder de relación 33 kV / 154 kV (\pm 12 × 1.25%) y 60/80 MVA (ONAN/ONAF) de potencia aparente nominal. Este transformador cuenta con un devanado de baja tensión de 33 kV y un arrollamiento de alta tensión de 154 kV. Este equipo posee cambiador de tomas bajo carga.

Los datos característicos del transformador principal se muestran en la Tabla 3.2.

Parámetro	Valor
Potencia Nominal	60/80 MVA
Refrigeración	ONAN/ONAF
Tensión nominal lado HV	154.0 kV
Tensión nominal lado LV	33.0 kV
Grupo de conexión	YNd11
Impedancia	12.54 %
Pérdidas en carga	332.36 kW
Pérdidas en vacío	34.7 kW
Posiciones de TAP	±12 x 1.25 %

Tabla 3.2 – Datos del transformador principal

3.5 Datos de consumos de SSAA de planta

El Parque Eólico Mesamávida cuenta con un transformador de poder para alimentar sus servicios auxiliares de 75 kVA de potencia aparente nominal. Este transformador cuenta con un devanado de baja tensión de 0.4 kV y un arrollamiento de alta tensión de 33 kV.

En el documento "MES-D-MCAL-ELE-0007-R00" se realiza el dimensionamiento de los consumos asociados a las instalaciones de 154 kV y 33 kV de la S/E Mesamávida considerando servicios auxiliares en 400/230 Vca.

En la Figura 3.10 se presenta el resumen de cargas asociadas a los servicios auxiliares, se aprecia que el total de consumos esenciales es de 18.3 kW.

Categoría	Potencia [kW]
Total, Consumo Esenciales	18,30
Total, Consumo No Esenciales	14,88
Total, Consumo	33,18

Figura 3.10 - Cargas permanentes en corriente continua

4 DETERMINACIÓN DEL MÍNIMO TÉCNICO

El Mínimo Técnico corresponde al menor valor de potencia activa bruta que el parque es capaz de mantener de manera estable.

Tal como se ha mencionado en el capítulo 2 se determina el **Mínimo Técnico con el parque** completamente operativo y el **Mínimo Técnico considerando sólo un aerogenerador en servicio**.

Para cada una de las pruebas de Mínimo Técnico realizadas, se reportan los valores de potencia según se desglosan en la siguiente tabla de resultados, las definiciones se encuentran a continuación.

Parque Eólico	Potencia Bruta [kW]	SS.AA. [kW]	Pérdidas en la central [kW]	Potencia Neta [kW]
Mesamávida	(1)	(2)	(3)	(4)

Tabla 4.1 - Tabla resumen de valores a presentar

- (1) **Potencia Bruta del Parque:** Corresponde a la suma de los aportes distribuidos de potencia activa alterna de cada aerogenerador del parque Parque Eólico Mesamávida.
- (2) **Potencia de SS.AA.:** Corresponde a la suma de los consumos propios promedio de cada aerogenerador estimados en kW x Cantidad de aerogeneradores (considerando todos los aerogeneradores en servicio), más los SS.AA. de la central
- (3) Pérdidas en la central: Corresponde a la suma de las pérdidas en el transformador de poder de la central (kW) y de las pérdidas en el sistema colector de media tensión (circuitos colectores y transformadores de bloque).
- (4) **Potencia Neta del parque:** Potencia inyectada en lado de 154 kV del transformador principal del parque.

4.1 Mínimo Técnico considerando sólo un aerogenerador en servicio

El día 21 de noviembre de 2022 se realizó el ensayo de Mínimo Técnico considerando sólo un aerogenerador en servicio. Para lograr esta condición se da orden de detención a todos los aerogeneradores del parque a excepción del aerogenerador 34 (AE-34bis), correspondiente al más lejano e instalado en el contexto de la segunda etapa del parque. En esta condición todos los circuitos colectores y transformadores de bloque se mantienen energizados.

En la Figura 4.1 se muestra el ensayo de Mínimo Técnico considerando únicamente la turbina AE-34bis en servicio con una consigna de 480 kW. En la gráfica se presenta la medición efectiva de potencia en bornes del AE-34bis ("P AERO" en la figura) y la potencia medida en 33kV en la entrada del transformador elevador ("P MT" en la figura).

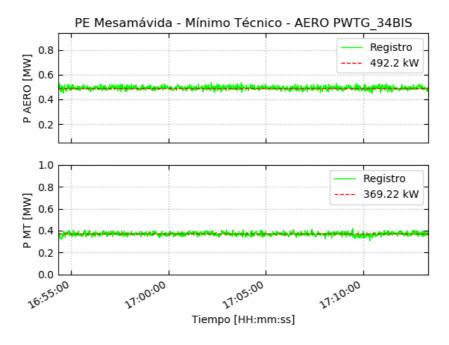


Figura 4.1 - Mínimo Técnico - Aerogenerador AE-34bis

A continuación, se realiza el cálculo de los valores de potencia según se desglosan en la Tabla 4.1.

4.1.1 Potencia Bruta

La medición de potencia del aerogenerador presentada en la Figura 4.1 se realiza en bornes del equipo y ya se encuentran descontados los consumos propios del aerogenerador. Estos consumos se estiman en 15 kW, según se observa en la Figura 3.9. El valor de **Potencia Bruta** se obtiene según la siguiente expresión.

$$P_{bruta} = P_{AERO} + Consumos propios$$

$$P_{bruta} = 492.2 \, kW + 15 \, kW = 507.2 \, kW$$

4.1.2 Potencia de Servicios Auxiliares

La Potencia de Servicios Auxiliares corresponde a la suma de los consumos propios de cada aerogenerador estimados en kW x Cantidad de aerogeneradores más los Servicios Auxiliares de la central.

Según se observa en la Figura 3.9, el consumo interno de cada aerogenerador se estima en 15 kW y debe considerarse el consumo del único aerogenerador en servicio. Adicionalmente, se han estimado los consumos del transformador de servicios auxiliares ($P_{tr,SSAA}$) en 18.3 kW, según se presenta en la sección 3.5.

En base a estos datos se procede a calcular la Potencia de Servicios Auxiliares.

$$P_{SSAA} = N^{\circ} AEROS x Consumos Propios + P_{tr,SSAA}$$

$$P_{SSAA} = 1 \times 15 \ kW + 18.3 \ kW = 33.3 \ kW$$

4.1.3 Potencia de Pérdidas en la central

El valor de Potencia de Pérdidas en la central debe ser desglosado en los siguientes elementos:

- Pérdidas en el transformador principal ($P_{Perd,tr_{mal}}$)
- Pérdidas en red colectora de media tensión ($P_{Perd.redMT}$)

En la Tabla 3.2 se presentan los valores de pérdida en vacío y carga del transformador principal, cabe mencionar que el valor de pérdidas en carga está referido a la condición de potencia nominal del equipo y deben ser determinadas en la condición particular de carga particular del ensayo. La expresión de pérdidas del transformador principal es la siguiente.

$$P_{Perd,tr_{ppal}} = P\'{e}rdidas_{carga} + P\'{e}rdidas_{Vac\'{1}0}$$

Las pérdidas en carga en este escenario se pueden aproximar a 0.0 kW, ya que el nivel de carga del transformador principal es menor a 1%. Por lo tanto, las pérdidas en el transformador principal quedan dadas por la siguiente expresión.

$$P_{Perd,tr_{ppal}} = 0.0 \ kW + 34.7 \ kW = 34.7 \ kW$$

En tanto, el valor de pérdidas en la red colectora queda determinado en base a las mediciones realizadas durante el ensayo de Mínimo Técnico, considerando la diferencia entre la potencia medida en el Aerogenerador AE-34bis, los consumos del transformador de servicios auxiliares ($P_{tr,SSAA}$) y la potencia de media tensión ("P MT", ver Figura 4.1).

$$P_{Perd,redMT} = P_{AERO} - P_{tr,SSAA} - P_{MT}$$

$$P_{Perd,redMT} = 492.20 \ kW - 18.3 \ kW - 369.22 \ kW = 104.68 \ kW$$

La expresión para el cálculo de Potencia de Pérdidas en la central se presenta a continuación.

$$P_{perd,central} = P_{Perd,tr_{ppal}} + P_{Perd,redMT}$$

$$P_{perd,central} = 34.7 \ kW + 104.68 \ kW = 139.38 \ kW$$

4.1.4 Potencia Neta

La Potencia Neta corresponde a la potencia inyectada en lado de 154 kV del transformador principal. El cálculo de **Potencia Neta** se realiza considerando el registro de potencia de media tensión ("P MT" en la Figura 4.1), a lo que debe restarse la potencia de los consumos propios del transformador elevador (ver Tabla 3.2) según la siguiente expresión.

$$P_{neta,ens} = P_{MT} - P_{Perd,tr_{ppal}}$$

$$P_{neta.ens} = 369.22 \ kW - 34.7 \ kW = 334.52 \ kW$$

4.1.5 Resultados

En base a los cálculos presentados en las secciones precedentes y los registros operacionales, se muestra a continuación la tabla resumen de resultados.

Parque Eólico	Potencia Bruta [kW]	SS.AA. [kW]	Pérdidas en la central [kW]	Potencia Neta [kW]
Mesamávida	507.20	33.30	139.38	334.52

Tabla 4.2 – Mínimo Técnico – Aerogenerador AE-34bis – Parque Eólico Mesamávida

4.2 Mínimo Técnico con el parque completamente operativo

A continuación, se realizó el ensayo de Mínimo Técnico considerando el parque completamente operativo. Para lograr esta condición se debe buscar el valor mínimo de potencia que permite la operación estable y segura del parque con la totalidad de aerogeneradores en servicio.

Según informa el fabricante de los aerogeneradores, el valor mínimo de potencia activa que permite la operación estable de los aerogeneradores es de aproximadamente 480 kW. Cabe mencionar que la suma de potencia de los aerogeneradores de 6.42 MW (ver Figura 4.2) implica un despacho aproximado de 494 kW para cada unidad.

En la Figura 4.2 se muestra el ensayo de Mínimo Técnico considerando todos los aerogeneradores del parque en servicio. Se presentan las mediciones de potencia considerando el aporte de todos los aerogeneradores en servicio, y la potencia medida en 33kV en la entrada del transformador elevador. La diferencia registrada entre ambos valores es de 0.22 MW. Se presenta además la lectura de SCADA que identifica que los 13 aerogeneradores se encuentran en servicio de forma estable.

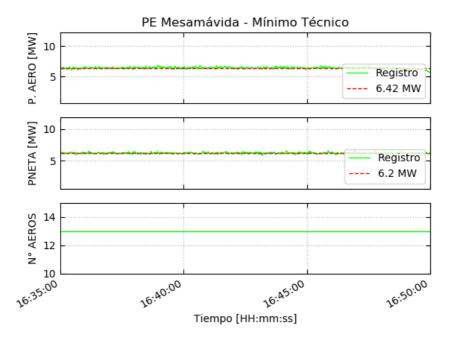


Figura 4.2 - Mínimo Técnico - Todos los aerogeneradores en servicio

A continuación, se realiza el cálculo de los valores de potencia según se desglosan en la Tabla 4.1.

4.2.1 Potencia Bruta

La medición de potencia de los aerogeneradores presentada en la Figura 4.2 se realiza en bornes del equipo y ya se encuentran descontados los consumos propios del aerogenerador. Estos consumos se estiman en 15 kW, según se observa en la Figura 3.9. El valor de **Potencia Bruta** se obtiene según la siguiente expresión.

$$P_{bruta,med} = P_{AERO} + N^{\circ} AEROS x Consumos propios$$

$$P_{bruta,med} = 6.42 MW + 13 \times 15 kW = 6.62 MW$$

4.2.2 Potencia de Servicios Auxiliares

La Potencia de Servicios Auxiliares corresponde a la suma de los consumos propios de cada aerogenerador estimados en kW x Cantidad de aerogeneradores más los Servicios Auxiliares de la central.

Según se observa en la Figura 3.9, el consumo interno de cada aerogenerador se estima en 15 kW y debe considerarse la totalidad de unidades en servicio. Adicionalmente, se han estimado los consumos del transformador de servicios auxiliares ($P_{tr,SSAA}$) en 18.3 kW, según se presenta en la sección 3.5.

En base a estos datos se procede a calcular la Potencia de Servicios Auxiliares.

$$P_{SSAA} = N^{\circ} AEROS x Consumos Propios + P_{tr,SSAA}$$

$$P_{SSAA} = 13 \times 15 \, kW + 18.3 \, kW = 213.3 \, kW$$

4.2.3 Potencia de Pérdidas en la central

El valor de Potencia de Pérdidas en la central debe ser desglosado en los siguientes elementos:

- Pérdidas en transformador principal ($P_{perd,tr_{vval}}$)
- Pérdidas en red colectora de media tensión ($P_{perd,redMT}$)

En la Tabla 3.2 se presentan los valores de pérdida en vacío y carga del transformador principal, cabe mencionar que el valor de pérdidas en carga está referido a la condición de potencia nominal del equipo y deben ser determinadas en la condición de carga particular del ensayo. La expresión de pérdidas del transformador principal es la siguiente.

$$P_{perd,tr_{nnal}} = P\'{e}rdidas_{carga} + P\'{e}rdidas_{vac\'{1}0}$$

Las pérdidas en carga en este escenario se pueden aproximar a 0.0 kW, ya que el nivel de carga del transformador principal es cercano al 8 %. Por lo tanto, las pérdidas en el transformador principal quedan dadas por la siguiente expresión.

$$P_{perd,tr_{ppal}} = 0.0 \ kW + 34.7 \ kW = 34.7 \ kW$$

En tanto, el valor de pérdidas en la red colectora queda determinado en base a las mediciones realizadas durante el ensayo de Mínimo Técnico, considerando la diferencia entre la potencia medida en los aerogeneradores, los consumos del transformador de servicios auxiliares ($P_{tr,SSAA}$) y la potencia de media tensión ("P MT", ver Figura 4.2).

$$P_{Perd,redMT} = P_{AERO} - P_{tr,SSAA} - P_{MT}$$

$$P_{Perd,redMT} = 6.42 \, MW - 18.3 \, kW - 6.20 \, MW = 201.70 \, kW$$

La expresión para el cálculo de **Potencia de Pérdidas en la central** se presenta a continuación.

$$P_{perd,central} = P_{Perd,tr_{ppal}} + P_{Perd,redMT}$$

$$P_{perd,central} = 34.7 \; kW + 201.70 \; kW = 236.40 \; kW$$

4.2.4 Potencia Neta

La Potencia Neta corresponde a la potencia inyectada en lado de 154 kV del transformador principal. El cálculo de **Potencia Neta** se realiza considerando el registro de potencia de media tensión ("P MT" en la Figura 4.2), a lo que debe restarse la potencia de los consumos propios del transformador elevador (ver Tabla 3.2) según la siguiente expresión.

$$P_{neta,ens} = P_{MT} - P_{Perd,tr_{ppal}}$$

$$P_{neta.ens} = 6.20 MW - 34.7 kW = 6.17 MW$$

4.2.5 Resultados

En base a los cálculos presentados en las secciones precedentes y los registros operacionales, se muestra a continuación la tabla resumen de resultados.

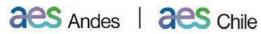
Parque Eólico	Potencia Bruta [MW]	SS.AA. [kW]	Pérdidas en la central [kW]	Potencia Neta [MW]
Mesamávida	6.62	213.30	236.40	6.17

Tabla 4.3 – Mínimo Técnico – Planta completa – Parque Eólico Mesamávida

5 CONCLUSIONES

Se determinó mediante ensayos el **Mínimo Técnico con el parque completamente operativo** y el **Mínimo Técnico considerando sólo un aerogenerador en servicio**. Los resultados se resumen a continuación.

Parque Eólico	Potencia Bruta [kW]	SS.AA. [kW]	Pérdidas en la central [kW]	Potencia Neta [kW]
Mesamávida	507.20	33.30	139.38 ¹	334.52


Tabla 5.1 – Mínimo Técnico – Aerogenerador AE-34bis – Parque Eólico Mesamávida

Parque Eólico	Potencia Bruta [MW]	SS.AA. [kW]	Pérdidas en la central [kW]	Potencia Neta [MW]
Mesamávida	6.62	213.30	236.40 ²	6.17

Tabla 5.2 – Mínimo Técnico – Planta completa – Parque Eólico Mesamávida

¹ Desglosado en 34.7 kW de pérdidas en el transformador principal y 104.68 kW de pérdidas en la red colectora de media tensión.

² Desglosado en 34.7 kW de pérdidas en el transformador principal y 201.70 kW de pérdidas en la red colectora de media tensión.

Esta página ha sido intencionalmente dejada en blanco.