

ENSAYOS DE VERIFICACIÓN DE SERVICIOS COMPLEMENTARIOS DE CONTROL TERCIARIO DE FRECUENCIA

PSFV USYA

Informe final

Diciembre 2021 A 0657-21

Tabla de contenido

REG	SISTR	RO DE COMUNICACIONES	5
SEC	CIÓN	N PRINCIPAL	6
	1.	INTRODUCCIÓN	6
	1.1.	Descripción del parque solar fotovoltaico	6
	2.	DESCRIPCIÓN DE LOS COMPONENTES PRINCIPALES DE LA PLANTA	11
	2.1.	Control de planta	11
	2.2.	Inversores	12
	2.3.	Transformadores de bloque de los inversores	13
	2.4.	Red colectora	15
	2.5.	Transformador de potencia	15
	2.6.	Cambiador de tap bajo carga	16
	3.	DESCRIPCIÓN DE LOS ENSAYOS	17
	4.	RESULTADOS OBTENIDOS	17
	4.1.	Verificación del gradiente de incremento / reducción de carga	17
	5.	VERIFICACIÓN DE AJUSTES	19
	5.1.	Ajuste de protecciones de los inversores	19
	5.2.	Ajuste de protecciones de la subestación	20
	6.	CONCLUSIONES	21
	7.	REFERENCIAS	21
ANE	XO 1	L. INFORMACIÓN TÉCNICA	22

Índice de tablas y gráficos

Tabla 1. Datos de los cables de la red colectora	15
Tabla 2. Resumen de ajuste de protecciones de tensión	19
Tabla 3. Resumen de ajuste de protecciones de frecuencia	20
Tabla 4. Ajuste de protecciones de la subestación	20
Gráfico 1. Zona geográfica de conexión del PSFV USYA	7
Gráfico 2. Vista Satelital del PSFV USYA.	8
Gráfico 3. Esquema unilineal de la SE USYA	9
Gráfico 4. Red colectora del PSFV USYA	10
Gráfico 5. Captura del SCADA del PPC del PSFV USYA	12
Gráfico 6. Curva PQ del inversor INGECON SUN 1640TL	12
Gráfico 7. Transformador BT/MT para tres inversores	13
Gráfico 8. Transformador de BT/MT para un inversor individual	14
Gráfico 9. Datos técnicos del transformador de potencia	16
Gráfico 10. Gradiente de incremento / reducción de carga de 10 %/min	17
Gráfico 11. Gradiente incremento / Reducción de carga 20 %/min – variables temporales	18
Gráfico 12. Gradiente de incremento / reducción de carga 70 %/min – variables temporales.	18
Gráfico 13. Ajuste de protecciones de los inversores del parque	19
Gráfico 14. Captura de SCADA, esquema general del PSFV USYA	22
Gráfico 15. Placa característica del transformador de potencia	22
Gráfico 16. Captura de pantalla de la parametrización del control de cambiador de TAP	23
Gráfico 17. Hoja de datos de la parametrización del cambiador de TAP	24
Gráfico 18. Características del inversor INGECON SUN 1640TL B630	24
Gráfico 19. Representación esquemática simplificada de conexión de equipamiento	25

Abreviaturas y acrónimos

CEN Coordinador Eléctrico Nacional

CNE Comisión Nacional de Energía

CDC Centro de despacho del coordinador

ERNC Energía Renovables No Convencional

NTSyCS Norma Técnica de Seguridad y Calidad de Servicio

NT SSMM Norma Técnica de Seguridad y Calidad de Servicio para Sistemas Medianos

PE Parque Eólico

PSFV Parque solar fotovoltaico

SE Subestación eléctrica

AT Alta tensión

MT Media tensión

BT Baja tensión

ONAN Oil Natural Air Natural

ONAF Oil Natural Air Forced

SEN Sistema Eléctrico Nacional

RCB Regulador Bajo Carga

PMU Power Management Unit

REGISTRO DE COMUNICACIONES

Registro de las actividades, comunicaciones y aprobación de informes.

Número	Fecha	Objeto	Ref	Observaciones	Responsable
	dd/mm/año				
1	23/12/2021	Informe de ensayos de servicios complementarios de control terciario de frecuencia	V1	Preparó BL - FG	FM

SECCIÓN PRINCIPAL

1. INTRODUCCIÓN

En el siguiente informe se documentan los ensayos de campo realizados en el Parque Solar Fotovoltaico (PSFV) USYA durante el 31 de agosto de 2021 en relación con el proceso de verificación de la prestación de servicios complementarios de control terciario de frecuencia en giro.

De esta manera, se han obtenido registros que muestran la respuesta de los sistemas de control del parque según los requerimientos en el Anexo Técnico: Verificación De Instalaciones Para La Prestación SSCC de la Norma Técnica de Servicios Complementarios (NTSSCC) vigente, y en la Guía de Verificación de Servicios Complementarios de Control de Frecuencia.

1.1. Descripción del parque solar fotovoltaico

El PSFV USYA, se encuentra ubicado aproximadamente a 7 km al sureste de la comuna de Calama, región de Antofagasta, provincia de El Loa. El mismo está constituido por 37 inversores marca Ingeteam modelo INGECON SUN 1640TL B630, cuya potencia nominal es de 1.637 MVA (a 30 °C) / 1.473 MVA (a 50 °C), lo cual totaliza una potencia de 60.57 MVA (a 30 °C) / 54.50 MVA (a 50 °C), siendo que la potencia activa máxima declarada en el punto de conexión es de 52.4 MW.

Los inversores se encuentran agrupados, formando grupos de tres inversores en cada celda, restando uno que se ubica solo en una celda aparte. En cada celda conformada por tres inversores, se conecta un transformador de 5.07 MVA (ONAN a 35 °C) / 4.81 MVA (ONAN a 45 °C) de relación 0.63/33 kV. Por otro lado, en la celda que contiene solo un inversor, se conecta un transformador de 1.69 MVA (ONAN a 35 °C) / 1.61 MVA (ONAN a 45 °C).

El sistema colector se encuentra conformado por tres circuitos de 33 kV, los cuales acometen a una barra común. Posteriormente, se eleva la tensión mediante un transformador de relación 110/33 kV, con una potencia de 65/80 MVA (ONAN/ONAF) ubicado en la SE USYA. El punto de conexión de la planta es en lado de AT (110 kV) de la SE USYA.

El PSFV USYA se conecta a la SE 110 kV Chiu Chiu, a través de una línea de aproximadamente 2.7 km de longitud. Luego, la SE mencionada se conecta a la SE Calama a través de la línea Valle de los Vientos-Calama 110 kV, de aproximadamente 14 km.

En el **Gráfico 1** y el **Gráfico 2** se muestra la zona geográfica del proyecto, en el **Gráfico 3** el esquema unilineal de conexión del PSFV (SE USYA), mientras que en el **Gráfico 4** se puede observar la conformación de la red colectora del mismo.

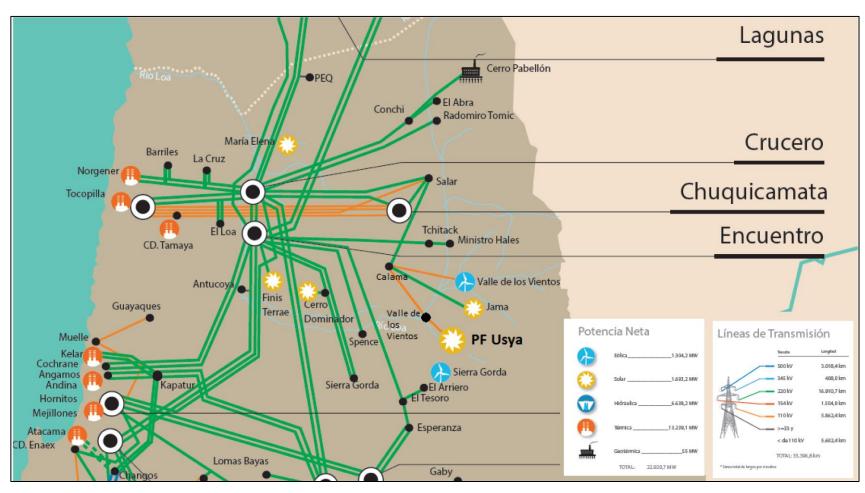


Gráfico 1. Zona geográfica de conexión del PSFV USYA.

Gráfico 2. Vista Satelital del PSFV USYA.

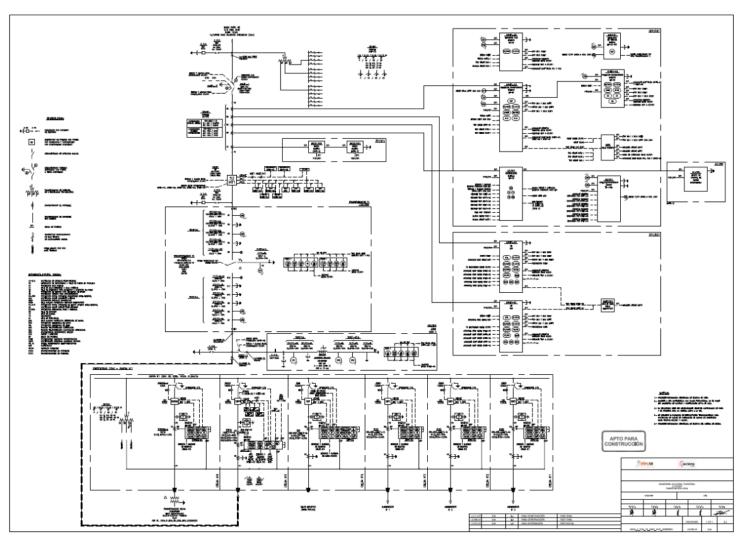


Gráfico 3. Esquema unilineal de la SE USYA.

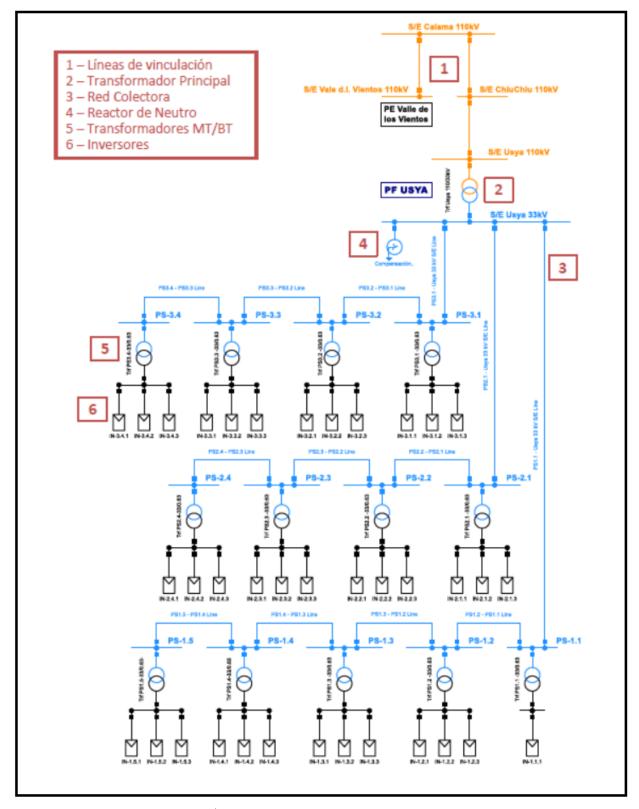


Gráfico 4. Red colectora del PSFV USYA.

2. DESCRIPCIÓN DE LOS COMPONENTES PRINCIPALES DE LA PLANTA

2.1. Control de planta

El control de planta posee las siguientes funcionalidades:

- Funciones de control de potencia activa:
 - Control de potencia activa 0-100%: Permite ajustar el valor de potencia activa a un valor determinado. Cuando la limitación de rampa está activa, tanto la rampa subida como de bajada quedan definidas por una pendiente determinada. En el caso particular del PSFV USYA, está pendiente estaba configurada en 20 %/min tanto para la toma de carga como para la reducción de generación.
 - Control de frecuencia: Esta función contempla la respuesta de la potencia activa en función a las fluctuaciones de frecuencia respecto a la nominal (50 Hz). La respuesta del parque estará dada por una curva de potencia / frecuencia que posee una pendiente y una banda muerta.
- Funciones de control de potencia reactiva:
 - \circ Control de tensión: Permite definir un valor de consigna de tensión en el punto de conexión del PSFV. En el caso particular de la PSFV USYA el control es del tipo VQ, lo cual implica que el control se realiza a través de una pendiente de Q (f(Δ V)) predefinida.
 - Control de potencia reactiva: Permite definir un valor de consigna de potencia reactiva en el punto de conexión, la cual es distribuida entre todos los inversores.
 - Control de factor de potencia: Permite definir un valor de consigna de factor de potencia en el punto de conexión, controlando la inyección de potencia reactiva para mantenerlo constante.
- Modo Nocturno: El Parque Solar Fotovoltaico USYA cuenta con la posibilidad de poder inyectar potencia reactiva sin recurso primario.

El PPC envía las consignas de potencia activa y reactiva que se reparten en los Inversores del PSFV USYA. Las funciones de control de tensión y factor de potencia a nivel inversor no se encuentran disponibles, por lo tanto, no fueron ensayadas. A nivel inversor solo está habilitado el envío de consignas de potencia activa y reactiva, desde el sistema SCADA.

En el Gráfico 5 puede observarse la captura del SCADA del PPC del PSFV en cuestión.

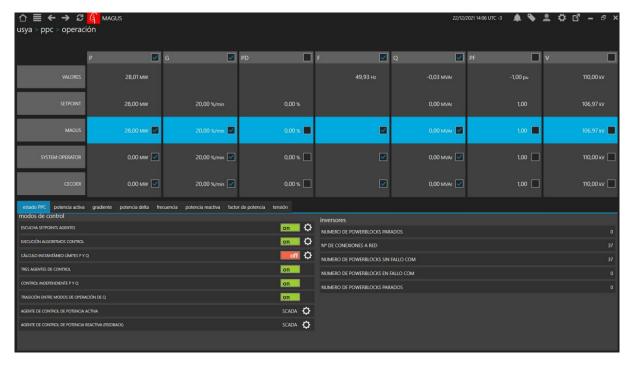


Gráfico 5. Captura del SCADA del PPC del PSFV USYA.

2.2. **Inversores**

En el Gráfico 6 se muestra la curva de PQ para el inversor INGECON SUN 1640TL B630, fabricado por Ingeteam. En el mismo gráfico puede observarse que la capacidad de absorción y entrega de potencia es dependiente de la tensión en bornes del inversor.

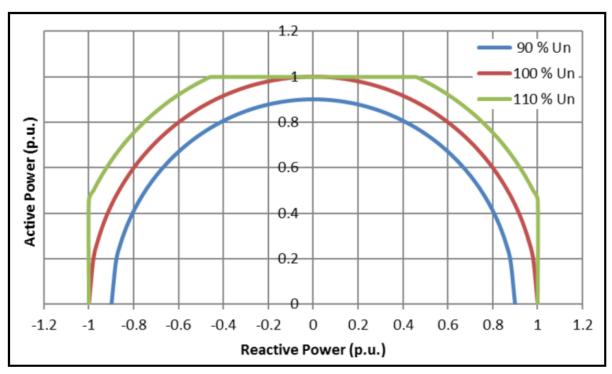


Gráfico 6. Curva PQ del inversor INGECON SUN 1640TL.

En el ANEXO 1 se muestra mayor información sobre los inversores mencionados.

2.3. Transformadores de bloque de los inversores

Como se mencionó anteriormente, la tensión a la cual generan los inversores es elevada mediante transformadores de 0.63/33 kV. Teniendo en cuenta que los inversores se agrupan de a tres en cada celda, con la salvedad de que uno de estos dispositivos se encuentra solo en una celda, se muestra, en los siguientes gráficos, los datos de los transformadores utilizados,

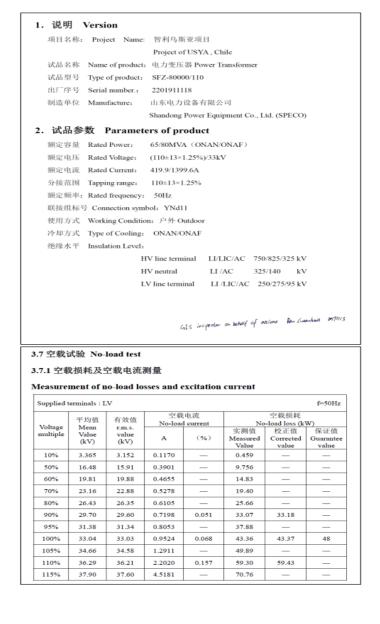
Type / Installation		Hermatically sealed completely filled / Outdoor
Rated Power (MVA)		5070 kVA @35ºC
		4935 kVA @40ºC
		4810 kVA @45ºC
Cooling Type		ONAN
Rated Voltages (at no load)		
HV	kV	33
LV	kV	0.630
Regulated HV voltages	٧	±5 x 2.5%
Regulation	-	On HV side with Off-Circuit Tap-Changer (OCTC)
Rated Frequency	Hz	50
Vector Group Symbol		Dy11
Max ambient Temperature at 5070 kVA	∘C	+35
Temperature rise (winding / oil)	K	66.5 / 61.5 (*) at 5070 kVA – at 35°C
		61.5 / 56.5 (*) at 4935 kVA – at 40°C
		56.5 / 51.5 (*) at 4810 kVA – at 45°C
Hot-Spot Temperature Rise	K	79.5 (*) at 5070 kVA – at 35°C
		74.5 (*) at 4935 kVA – at 40°C
		69.5 (*) at 4810 kVA – at 45°C
Winding Material (HV/LV)		Aluminium
No load losses at rated voltage at 50 Hz	kW	4.0 + IEC % tol.
No load current at rated voltage ratio	%	< 1.0
Load Losses	kW	38.0 + IEC % tol.
at 75°C, based on 5070 kVA, 33/0.63 kV		
Total THDi		< 3.0%
Efficiency		> 99.0 % (PF=1)
Inrush current at HV side	-	≤7xIn
Noise Level		As per IEC60076-11
X/R ratio		~ 9,00
Impedance voltage	%	6,8% ± IEC % tol.
at 75°C, based on 5070 kVA, 33/0.63 kV, 50Hz		
Insulation level		
HV (BIL/AC)	kV	170 / 70
LV (BIL/AC)	kV	20 / 10
Altitude	m	2411
Transformer Dimensions (L x W x H)		Pls. see dimensional drawing
Transformer Weights	kg	Pls. See dimensional drawing
Manufacturing standards and tolerances		IEC 60076
Terminations		
HV		Plug-in bushings
LV		Busbar bushings
Corrosion Degree / Colour		C4-H according to ISO12944 / 7035
Corrosion Degree / Colour		64 11 decording to 15012544 / 7035

Gráfico 7. Transformador BT/MT para tres inversores.

Type / Installation	1	
	+	Hermatically sealed completely filled / Outdoor
Rated Power (MVA)		1690 kVA @35ºC
		1650 kVA @40ºC
		1610 kVA @45ºC
Cooling Type		ONAN
Rated Voltages (at no load)		
HV	kV	33
LV	kV	0.630
Regulated HV voltages	V	±5 x 2.5%
Regulation	-	On HV side with Off-Circuit Tap-Changer (OCTC)
Rated Frequency	Hz	50
Vector Group Symbol		Dy11
Max ambient Temperature at 1690 kVA	∘C	+35
Temperature rise (winding / oil)	К	79.5 (*) at 1690 kVA – at 35°C
		74.5 (*) at 1650 kVA – at 40°C
		69.5 (*) at 1610 kVA – at 45°C
Hot-Spot Temperature Rise	K	79.5 (*) at 1690 kVA – at 35°C
		74.5 (*) at 1650 kVA – at 40°C
		69.5 (*) at 1610 kVA – at 45°C
Winding Material (HV/LV)		Aluminium
No load losses at rated voltage at 50 Hz	kW	1.69 + IEC % tol.
No load current at rated voltage ratio	%	< 1.0
Load Losses	kW	13.52 + IEC % tol.
at 75°C, based on 1690 kVA, 33/0.63 kV		
Total THDi		< 3.0%
Efficiency		> 99.0 % (PF=1)
Inrush current at HV side	-	≤ 7xIn
Noise Level		As per IEC60076-11
X/R Ratio		~ 8,4
Impedance voltage	%	6,8% ± IEC % tol.
at 75°C, based on 1690 kVA, 33/0.63 kV, 50Hz		
Insulation level		
HV (BIL/CW/AC)	kV	170 / 70
LV (BIL/AC)	kV	20 / 10
Altitude	m	2411
Approximate Transformer Dimensions		Please see Preliminary Drawing
Approximate Transformer Weights		Please see Preliminary Drawing
Manufacturing standards and tolerances		IEC 60076
Terminations		
HV	/	Plug-in bushings
LV	1	Busbar bushings
Corrosion Degree / Colour		C4-H according to ISO12944 / 7035

Gráfico 8. Transformador de BT/MT para un inversor individual.

2.4. Red colectora


La red colectora del PSFV está constituida por tres circuitos de 33 kV que acometen a una barra común. En la siguiente tabla se detallan los parámetros de los circuitos mencionados.

C [µF/km] $R [\Omega/km]$ $X [\Omega/km]$ Sección [mm²] Circuito 1 240 0.125 0.118 0.244 Circuito 2 400 0.078 0.110 0.288 Circuito 3 630 0.047 0.102 0.345

Tabla 1. Datos de los cables de la red colectora.

2.5. Transformador de potencia

Para evacuar la potencia generada por el PSFV, se utiliza un transformador elevador de relación 110/33 kV, con una potencia de 65/80 MVA (ONAN/ONAF). En el siguiente gráfico se muestran las características principales de esta máquina.

Ieasu	rement o	of short	-circuit	impedance	and load le	oss		
				•	-50Hz		mperature: 22	T0.
项目			計值 ed value	短路阻抗!	Impedance		损耗(kW) Loss	
Item	分接 Position	电压 (kV) voltage	电流 (A) current	Uk(%) Impendence measured value	保证值 Guarantee value (%)	实测 损耗 Measure value	负载损耗 Corrected load loss at 75℃	保证值 Guarante e value
monig	1	9.120	198.57	12.97	≤13.6	200.55	231.35	_
	2	9.424	211.77	12.84	_	200.78	231.83	_
	3	9.322	216.32	12.71	_	200.19	231.60	_
	4	8.826	211.45	12.59	_	199.49	231.32	_
HV-LV	5	8.544	211.51	12.46	_	198.95	231.20	_
	6	8.551	218.35	12.35	_	198.57	231.17	_
	7	8.009	211.05	12.25	_	198.06	231.09	_
	8	7.838	213.31	12.15	_	198.12	231.46	_
	9	7.605	213.72	12.04	_	196.91	230.83	_
	10	7.380	213.84	11.95	_	197.28	231.40	_
	11	7.053	210.82	11.86	_	197.30	231.76	_
	12	6.846	211.13	11.78	_	197.45	232.21	_
	13	6.73	213.91	11.71	_	198.56	233.59	_
	RATE (14)	6.459	211.48	11.66	12(±7.5%)	197.04	232.37	272
	15	7.468	251.56	11.62	_	204.47	240.26	_
	16	7.301	253.22	11.58	_	208.96	245.65	_
	17	7.111	253.27	11.57	_	213.76	251.34	_
	18	6.952	254.00	11.58	_	218.57	257.11	_
	19	6.801	254.92	11.59	_	223.97	263.48	_
	20	6.592	253.34	11.61	_	229.52	270.02	_
IV-LV	21	6.452	253.63	11.66	_	235.89	277.38	_
IV-LV	22	6.295	253.07	11.72	_	242.07	284.62	_
	23	6.137	252.08	11.80	_	248.99	292.63	_
	24	6.009	251.80	11.90	_	256.37	301.03	_
	25	5.914	252.71	12.01	_	265.13	310.74	_
	26	5.801	252.68	12.13	_	272.06	319.06	_

Gráfico 9. Datos técnicos del transformador de potencia.

Este transformador tiene un conmutador bajo carga que permite regular la tensión en la red de MT y puede ser configurado en modo manual o automático. En operación normal de la planta este opera en modo automático.

2.6. Cambiador de tap bajo carga

El transformador de salida, como se mencionó anteriormente, posee un cambiador de tap bajo carga, el cual presenta un tiempo de retardo de 10.4 segundos. Este tiempo equivale a la suma del tiempo mecánico del OLTC el cual es de 5.4 segundos informado por el fabricante (Gráfico 16 – ANEXO 1) y el tiempo que debe esperar el control del cambiador de TAP (AVR) para mandar consigna una vez sobrepasada la banda muerta (±0.9% de 33kV – parámetro indicado como

insensibilidad) de tensión en MT de la subestación, que es de 5 segundos (Gráfico 17 - ANEXO 1).

3. DESCRIPCIÓN DE LOS ENSAYOS

Se realizaron ensayos para verificar la respuesta del control de potencia activa de la planta. Desde el SCADA se cambió la consigna de potencia activa en el sistema de control para evaluar tanto la rampa de bajada como la rampa de subida de potencia de la central, desde potencia máxima hasta el mínimo técnico. La configuración del control de planta permitía configurar tasas de variación de potencia activa de 0 – 100 %/min.

Se probaron las tasas 10 % /min, 20 % /min y 70 %/min, registrando las variables potencia activa (P), potencia reactiva (Q) y tensión en el punto de conexión del parque, verificando que se cumplan las tasas programadas y que la evolución en el tiempo fuese estable.

Luego de finalizadas las pruebas, se configuró nuevamente la tasa normal de funcionamiento de la planta, que en el caso del PSFV USYA es de 20 %/min, la cual cumple con la tasa máxima de toma de carga establecida en la normativa NTSyCS.

4. RESULTADOS OBTENIDOS

4.1. Verificación del gradiente de incremento / reducción de carga

El ensayo se realizó desde la potencia máxima disponible (52.4 MW) hasta el mínimo técnico que en el caso del PSFV Usya es de 0.5 MW. A continuación, se muestran los resultados obtenidos para las distintas pendientes de incremento / reducción de carga ensayadas:

4.1.1. Ensayo de tasa de variación de potencia activa de 10% / min

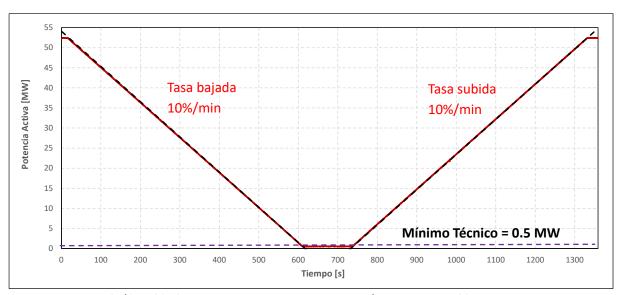


Gráfico 10. Gradiente de incremento / reducción de carga de 10 %/min.

4.1.2. Ensayo de tasa de variación de potencia activa de 20% / min

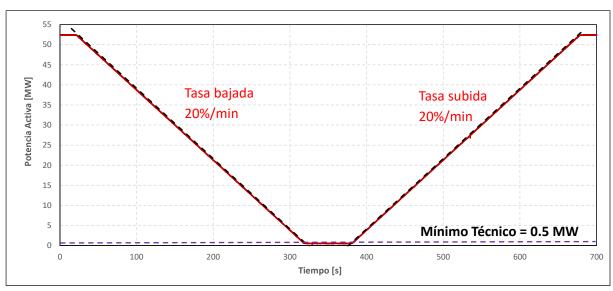


Gráfico 11. Gradiente incremento / Reducción de carga 20 %/min - variables temporales.

4.1.3. Ensayo de tasa de variación de potencia activa de 70% / min

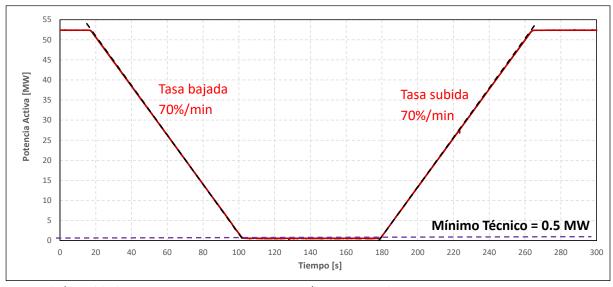


Gráfico 12. Gradiente de incremento / reducción de carga 70 %/min - variables temporales.

A partir de los gráficos anteriores, se puede concluir que el parque responde correctamente a las pendientes consideradas y la respuesta es estable para todo el tiempo que duró la prueba.

5. VERIFICACIÓN DE AJUSTES

5.1. Ajuste de protecciones de los inversores

En el Gráfico 13 se muestra el ajuste de las protecciones de tensión y frecuencia de los inversores. Luego, en las Tablas 2 y 3, se resumen estos ajustes.

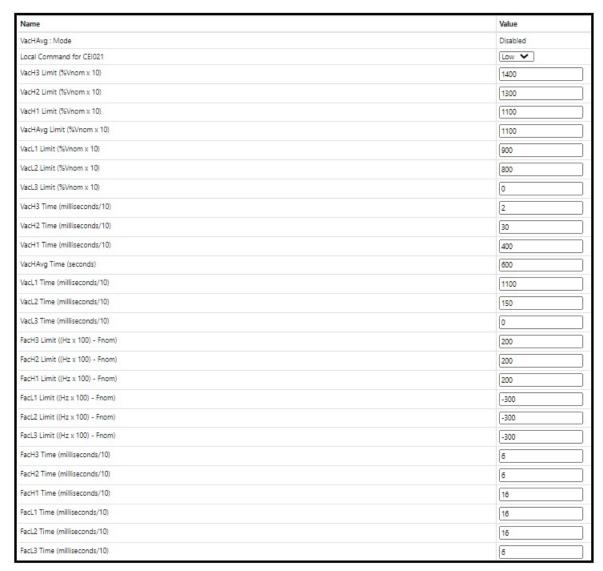


Gráfico 13. Ajuste de protecciones de los inversores del parque.

Tabla 2. Resumen de ajuste de protecciones de tensión.

Paso	Umbral de Activación [% Un]	Tiempo de retardo [ms]
НЗ	140	20
H2	130	300
H1	110	4000
L1	90	11000
L2	80	1500
L3	0	0

Tabla 3. Resumen de ajuste de protecciones de frecuencia.

DESCRIPCIÓN	VALOR
La frecuencia es superior al 104% del valor nominal durante 60 ms	52Hz
La frecuencia es inferior al 94% del valor nominal durante 60 ms	47Hz

Ajuste de protecciones de la subestación **5.2.**

En las siguientes tablas se muestra el ajuste de protecciones de la SE Usya:

Tabla 4. Ajuste de protecciones de la subestación.

	Table 4. Ajuste de protecciones de la subestacion.									
	Ajuste de las protecciones de sobretensión									
N	Área Elemento Paso		Umbral activación (%Un)	Tiempo de retardo (s)	Característica de tiempo					
	S Date 4		1	120%	3	Retardo Fijo				
subestación / Alta tensión		Relé 1	2	N/A	N/A	N/A				
erre lta ter		Dolá 2	1	120%	3	Retardo Fijo				
	Relé 2		2	N/A	N/A	N/A				
				Ajuste de las protecci	ones de subtensión					
N	Área	Elemento	Paso	Umbral activación (%Vn)	Tiempo de retardo (s)	Característica de tiempo				
	/ u	Relé 1	1	80%	2	Retardo Fijo				
1.b	aciór ensió	Kele I	2	N/A	N/A	N/A				
1.0	Subestación / Alta tensión	Relé 2	1	80%	2	Retardo Fijo				
	SL	reie ∠	2	N/A	N/A	N/A				

	Ajuste de las protecciones de sobretensión								
N	Área	Elemento	Paso	Umbral activación (%Un)	Tiempo de retardo (s)	Característica de tiempo			
	ión	Relé 1 ALIMENTADOR 1	1	120%	2	Retardo Fijo			
	a tensión	INGEPAC EF - MD	2	N/A	N/A	N/A			
4 -	Media	Relé 2 ALIMENTADOR 2	1	120%	2	Retardo Fijo			
1.c	_	INGEPAC EF - MD	2	N/A	N/A	N/A			
	Subestación	Relé 3 ALIMENTADOR 3	1	120%	2	Retardo Fijo			
	Sub	INGEPAC EF - MD	2	N/A	N/A	N/A			

	Ajuste de las protecciones de subtensión								
N	Área	Elemento	Paso	Umbral activación (%Un)	Tiempo de retardo (s)	Característica de tiempo			
	ión	Relé 1 ALIMENTADOR 1	1	80%	2	Retardo Fijo			
	a tensión	INGEPAC EF - MD	2	N/A	N/A	N/A			
4 -1	Media	Relé 2 ALIMENTADOR 2	1	80%	2	Retardo Fijo			
1.d	_	INGEPAC EF - MD	2	N/A	N/A	N/A			
	Subestación	Relé 3 ALIMENTADOR 3	1	80%	2	Retardo Fijo			
	Sub	INGEPAC EF - MD	2	N/A	N/A	N/A			

6. **CONCLUSIONES**

En relación con los ensayos realizados en campo, descritos en el presente informe, se concluye que el resultado de las pruebas realizadas fue satisfactorio. Los ensayos llevados a cabo fueron ejecutados de acuerdo al protocolo confeccionado y a los requerimientos de la Norma Técnica.

- Se probó el correcto desempeño del control de planta en lo referido a la respuesta del control de potencia activa para distintos gradientes de reducción y toma de carga, requeridos para poder realizar el control terciario de frecuencia.
- Se probaron las pendientes de toma y reducción de carga de 10 %/min, 20 %/min y 70 %/min. El control de potencia respondió adecuadamente y de forma estable.
- De lo anterior el PSFV USYA es apto para prestar servicios de control terciario de frecuencia en giro.

7. REFERENCIAS

- [1] EE-EN-2020-1471-RB-Informe_Validación_PF_USYA del 18/09/2020.
- [2] Informe-Técnico-de-Mínimo- Técnico-del-Parque-Fotovoltaico-Usya.
- [3] Hoja de datos del inversor INGECON SUN 1640TL B630, Ingeteam.

a.1) Captura de SCADA del esquema general del PSFV USYA.

ANEXO 1. INFORMACIÓN TÉCNICA

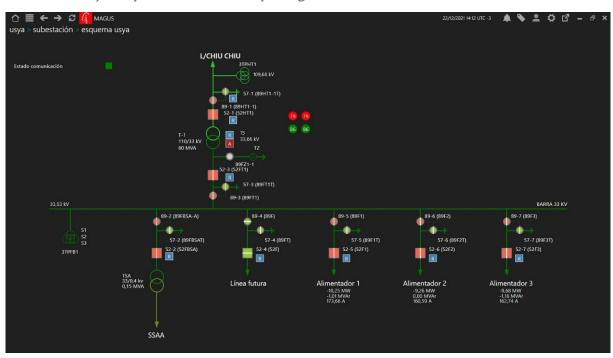


Gráfico 14. Captura de SCADA, esquema general del PSFV USYA.

a.2) Placa característica del transformador de potencia de la SE Usya

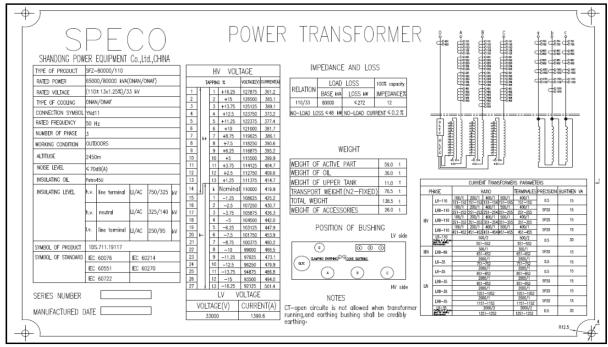


Gráfico 15. Placa característica del transformador de potencia.

a.3) Configuración del control del cambiador de TAP

Se adjunta la captura de pantalla de la configuración del control de cambiador de TAP del transformadore de potencia:

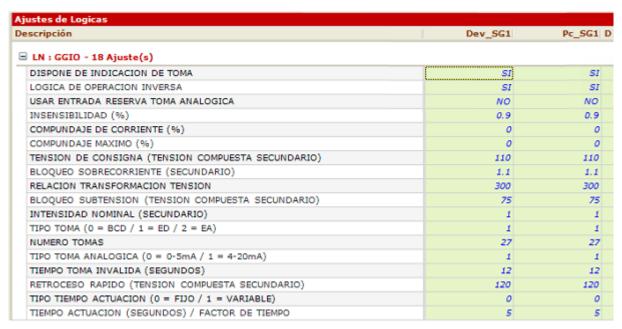


Gráfico 16. Captura de pantalla de la parametrización del control de cambiador de TAP.

a.4) Características del OLTC

Se adjunta las características del cambiador de tap bajo carga del transformador de potencia.

Motor-drive unit	ED 100-S/L	ED 2	200-S/L	
Motor power	0.75 kW	2.0 kW	2.2 kW	
Voltage	3	AC/N 230/400	V	
Current	approx. 1.9 A	approx. 5.2 A	approx. 6.2 A	
Frequency		50 Hz		
Synchronous speed		1500 rpm		
Rotations of the drive shaft per tap-change operation		16.5		
Duration of the tap-change operation	approx. 5.4 s			
Rated torque on the drive shaft	45 Nm	90 Nm	125 Nm	
Rotations of the hand crank per tap-change operation	33 54			
Maximum number of operating positions	35			
Heater voltage and control	AC 230 V			
Power input of the control circuit (control / operation)		100 VA/25 VA		
Heating power	50 V	V for ED 100/20	00 S	
	60 W for ED 100/200 L			
Temperature range (ambient temperature)	-25 °C to +50 °C			
Protection from foreign objects and water	IP 66 in accordance with DIN EN 60529			
Test voltage to ground	2 kV/60 s			
Weight	maximum 130 kg			

Gráfico 17. Hoja de datos de la parametrización del cambiador de TAP.

a.5) Características técnicas del inversor INGECON SUN 1640TL B630, brindadas por el fabricante

	1640TL B630
Input (DC)	
Recommended PV array power range(1)	1,620 - 2,128 kWp
Voltage Range MPP ⁽²⁾	911 - 1,300 V
Maximum voltage ⁽³⁾	1,500 V
Maximum current	1,850 A
N° inputs with fuse holders	6 up to 15 (up to 12 with the combiner box)
Fuse dimensions	63 A / 1,500 V to 500 A / 1,500 V fuses (optional)
Type of connection	Connection to copper bars
Power blocks	1
MPPT	1
Max. current at each input	From 40 A to 350 A for positive and negative poles
Input protections	
Overvoltage protections	Type II surge arresters (type I+II optional)
DC switch	Motorized DC load break disconnect
Other protections	Up to 15 pairs of DC fuses (optional) / Insulation failure monitoring / Anti-islanding protection / Emergency pushbutton
Output (AC)	
Power IP54 @30 °C / @50 °C	1,637 kVA / 1,473 kVA
Current IP54 @30 °C / @50 °C	1,500 A / 1,350 A
Power IP56 @27 °C / @50 °C(4)	1,637 kVA / 1,449 kVA
Current IP56 @27 °C / @50 °C(4)	1,500 A / 1,328 A
Rated voltage ⁽⁵⁾	630 V IT System
Frequency	50 / 60 Hz
Power Factor ⁽⁶⁾	1
Power Factor adjustable	Yes, 0-1 (leading / lagging)
THD (Total Harmonic Distortion)(7)	<3%

Gráfico 18. Características del inversor INGECON SUN 1640TL B630.

a.6) Datos del equipamiento de registrador

La adquisición y procesamiento de datos durante los ensayos antes descriptos serán realizados mediante la utilización de un equipamiento desarrollado específicamente para tal fin. El equipo de adquisición de datos está compuesto por los componentes indicados en la siguiente tabla:

Chasis					
Marca	National Instrument	s			
Modelo	cDAQ-9174				
N° de Serie	1707723	1707723			
Descripción	Porta-módulos (hasta 4 slots)				
Módulos de me	edición				
Unidad	Módulo 1	Módulo 2	Módulo 3	Módulo 4	
Marca	National Instruments				
Modelo	NI 9225	NI 9215	NI 9203	NI 9263	
N° de Serie	198862A	198860A	198861A	198856B	

Descripción	3 entradas analógicas de tensión 300 Vrms	4 entradas analógicas de tensión ±10 V	4 entradas analógicas de corriente ±20 mA	4 salidas analógicas de tensión ±10 V
Clase	0,2	0,2	0,2	0,2
Resolución	24 bits	16 bits	16 bits	16 bits
Muestreo	10.000 muestras/s	10.000 muestras/s	10.000 muestras/s	10.000 muestras/s
Valores RMS	100 puntos/s	100 puntos/s	100 puntos/s	100 puntos/s

El equipo registrador cuenta con verificación y calibración anual.

Las señales registradas se procesan en tiempo real para obtener las variables eléctricas de interés (tensión, corriente, potencias activa y reactiva, frecuencia, ángulos de desfase, etc), así como también la evolución temporal (trending) de las mismas. El procesamiento de los datos registrados será realizado utilizando el software personalizado, el cual fue desarrollado bajo la plataforma de programación LabVIEW, asociado al equipamiento de adquisición de National Instruments.

Conexión del equipamiento:

La medición de tensión se realiza en el secundario de los transformadores de Tensión (TV) mediante conexión directa a borneras. La medición de corriente se realiza mediante pinzas amperométricas, las cuales no interrumpen el circuito de corriente de los secundarios de los transformadores de intensidad (TI). La potencia activa (P), potencia reactiva (Q) y frecuencia son sintetizadas por software a partir de las mediciones de tensión y corriente.

A continuación, se muestra un gráfico esquemático del equipo:

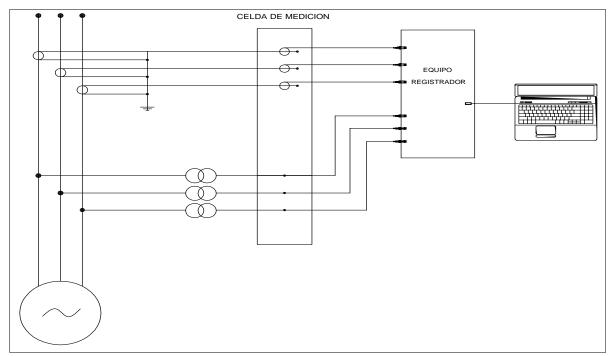


Gráfico 19. Representación esquemática simplificada de conexión de equipamiento.

Certificado de calibración

28/9/21 17:59

Certificate of Calibration

Certificate of Calibration

Certificate Number:	6894465	Date Printed:	28-SEP-2021
Serial Number: Description:	1FEFB0B MODULE ASSY,NI 9225,3-PHASE +/-300V ANALOG INPUT MODULE	Part Number:	198862C-01L
Calibration Date: Calibration Due Date*:	17-SEP-2021 -	Recommended Calibration Interval:	12 Months
Temperature:	21.66 °C	Humidity:	52.83% RH

Standards Used

Manufacturer	Model	Tracking Number	Calibration Date	Calibration Due Date
KEITHLEY	2410	10506	12-JUL-2021	12-NOV-2022
VAISALA	HMT331	7886	19-JAN-2021	19-JAN-2022
National Instruments	PXI-4070	24107	26-APR-2021	26-APR-2022
National Instruments	PXI-4071	24488	10-NOV-2020	10-NOV-2021
National Instruments	PXI-4110	6059	22-FEB-2021	22-FEB-2022
National Instruments	PXI-4110	23082	02-SEP-2021	02-NOV-2022
National Instruments	PXI-4461	23320	05-MAY-2021	05-MAY-2022
National Instruments	PXI-6653	23080	07-JUL-2021	07-JUL-2022

Calibration Due Date Calculator

*For new products, the calibration interval begins when the customer receives the product. You can use the following table to calculate the calibration due date for your product.

Calibration Details	Example	Actual
Calibration Date	28-JAN-2020	17-SEP-2021
Product Received Date	14-APR-2020	
Customer Calibration Interval	12 Months	
Calibration Due Date	14-APR-2021	

For most products, you can store the calibration due date in the product's EEPROM, either programmatically or using Measurement & Automation Explorer (NI MAX).

National Instruments certifies that at the time of test, the above product was calibrated in accordance with applicable National Instruments procedures. These procedures are designed to ensure that the product listed above meets or exceeds National Instruments specifications.

We further certify that the environment in which this product was calibrated is maintained within the operating specifications of the instrument(s) and standards. The measurement standards used during calibration are traceable to National Institute of Standards and Technology (NIST) and/or other International Measurement Institutes (NMI's) that are signatories of the International Committee of Weights and Measure (CIPM) Mutual Recognition Agreement (MRA).

The information shown on this certificate applies only to the instrument identified above and this certificate may not be reproduced, except in full, without the prior written consent of National Instruments.

For questions or comments, please contact NI Technical Support at ni.com/support

Cheryl Tulkoff
Director of Corporate Quality

National Instruments Corporation 11500 N. Mopac Expressway Austin, TX 78759-3504 USA Tel: (800) 531-5066

https://sine.ni.com/apps/utf8/nical.main?action=cert&serial_number=1FEFB0B

1/

28/9/21 17:28

Certificate of Calibration

Certificate of Calibration

Certificate Number:	6857137	Date Printed:	28-SEP-2021
Serial Number: Description:	1FD98D4 MODULE ASSY,NI 9215,4-CHANNEL	Part Number:	198860C-01L
Calibration Date:	SSH ANALOG INPUT 16-AUG-2021	Recommended	12 Months
Calibration Due Date*:	-	Calibration Interval:	12 Monato
Temperature:	23.45 °C	Humidity:	56.94% RH

Standards Used

Manufacturer	Model	Tracking Number	Calibration Date	Calibration Due Date
VAISALA	HMT331	7886	19-JAN-2021	19-JAN-2022
NATIONAL INSTRUMENTS	PXI 4110	1857	01-OCT-2020	01-OCT-2021
NATIONAL INSTRUMENTS	PXI-4070	7044	19-APR-2021	19-APR-2022
NATIONAL INSTRUMENTS	PXI-6120	6546	16-APR-2021	16-APR-2022

Calibration Due Date Calculator

*For new products, the calibration interval begins when the customer receives the product. You can use the following table to calculate the calibration due date for your product.

Calibration Details	Example	Actual
Calibration Date	28-JAN-2020	16-AUG-2021
Product Received Date	14-APR-2020	
Customer Calibration Interval	12 Months	
Calibration Due Date	14-APR-2021	

For most products, you can store the calibration due date in the product's EEPROM, either programmatically or using Measurement & Automation Explorer (NI MAX).

National Instruments certifies that at the time of test, the above product was calibrated in accordance with applicable National Instruments procedures. These procedures are designed to ensure that the product listed above meets or exceeds National Instruments specifications.

We further certify that the environment in which this product was calibrated is maintained within the operating specifications of the instrument(s) and standards. The measurement standards used during calibration are traceable to National Institute of Standards and Technology (NIST) and/or other International Measurement Institutes (NMI's) that are signatories of the International Committee of Weights and Measure (CIPM) Mutual Recognition Agreement (MRA).

The information shown on this certificate applies only to the instrument identified above and this certificate may not be reproduced, except in full, without the prior written consent of National Instruments.

For questions or comments, please contact NI Technical Support at ni.com/support

Cheryl Tulkoff
Director of Corporate Quality

National Instruments Corporation 11500 N. Mopac Expressway Austin, TX 78759-3504 USA Tel: (800) 531-5066

https://sine.ni.com/apps/utf8/nical.main?action=cert&serial_number=1FD98D4

1/1

28/9/21 18:00

Certificate of Calibration

Certificate of Calibration

Certificate Number:	6857092	Date Printed:	28-SEP-2021
Serial Number: Description:	1FD98C9 MODULE ASSY,NI 9215,4-CHANNEL SSH ANALOG INPUT	Part Number:	198860C-01L
Calibration Date: Calibration Due Date*:	16-AUG-2021 -	Recommended Calibration Interval:	12 Months
Temperature:	23.41 °C	Humidity:	58.43% RH

Standards Used

Manufacturer	Model	Tracking Number	Calibration Date	Calibration Due Date
VAISALA	HMT331	7886	19-JAN-2021	19-JAN-2022
NATIONAL INSTRUMENTS	PXI 4110	1857	01-OCT-2020	01-OCT-2021
NATIONAL INSTRUMENTS	PXI-4070	7044	19-APR-2021	19-APR-2022
NATIONAL INSTRUMENTS	PXI-6120	6546	16-APR-2021	16-APR-2022

Calibration Due Date Calculator

*For new products, the calibration interval begins when the customer receives the product. You can use the following table to calculate the calibration due date for your product.

Calibration Details	Example	Actual
Calibration Date	28-JAN-2020	16-AUG-2021
Product Received Date	14-APR-2020	
Customer Calibration Interval	12 Months	
Calibration Due Date	14-APR-2021	

For most products, you can store the calibration due date in the product's EEPROM, either programmatically or using Measurement & Automation Explorer (NI MAX).

National Instruments certifies that at the time of test, the above product was calibrated in accordance with applicable National Instruments procedures. These procedures are designed to ensure that the product listed above meets or exceeds National Instruments specifications.

We further certify that the environment in which this product was calibrated is maintained within the operating specifications of the instrument(s) and standards. The measurement standards used during calibration are traceable to National Institute of Standards and Technology (NIST) and/or other International Measurement Institutes (NMI's) that are signatories of the International Committee of Weights and Measure (CIPM) Mutual Recognition Agreement (MRA).

The information shown on this certificate applies only to the instrument identified above and this certificate may not be reproduced, except in full, without the prior written consent of National Instruments.

For questions or comments, please contact NI Technical Support at ni.com/support

Charg Julkoff Cheryl Tulkoff Director of Corporate Quality

National Instruments Corporation 11500 N. Mopac Expressway Austin, TX 78759-3504 USA Tel: (800) 531-5066

https://sine.ni.com/apps/utf8/nical.main?action=cert&serial_number=1FD98C9

1/1