| CONSULTORA:                    | GENERADOR: |
|--------------------------------|------------|
| Hamek INGENIEROS ASOCIADOS SAC | engie      |

| PROYECTO                   | CLIENTE            |
|----------------------------|--------------------|
| PRUEBAS DE POTENCIA MÁXIMA | COORDINADOR        |
| EN UNIDADES GENERADORAS    | ELÉCTRICO NACIONAL |

TITULO:

INFORME FINAL DE LAS PRUEBAS DE POTENCIA MÁXIMA CENTRAL HORNITOS UNIDAD GENERADORA CTH CON CARBÓN

N° DE DOCUMENTO PROYECTO

CTH-1-INF-HMK-001

| REV.  | 1          |                 |                                |
|-------|------------|-----------------|--------------------------------|
| FECHA | 19/05/2022 | EDITADO<br>PARA | Coordinador Eléctrico Nacional |

ESTE DOCUMENTO CONTIENE INFORMACIÓN PROPIETARIA Y NO PUEDE SER DUPLICADO, PROCESADO O CEDIDO A TERCEROS PARA UN USO DISTINTO AL DE ESTE PROYECTO Y EL OBJETO PARA EL QUE HA SIDO PREVISTO SIN LA AUTORIZACIÓN ESCRITA DE COORDINADOR ELÉCTRICO NACIONAL



|                | REGISTROS DE REVISIONES |            |                    |                    |  |  |
|----------------|-------------------------|------------|--------------------|--------------------|--|--|
| REVISION<br>N° | DIA DE<br>EMISIÓN       | REVISIONES | REVISADO POR       | APROBADO POR       |  |  |
| 1              | 19/05/2022              | Revisión 1 | Alfredo Valladares | Amadeo Carrillo V. |  |  |
| 2              | 30/06/2022              | Revisión 2 | Alfredo Valladares | Amadeo Carrillo V. |  |  |
|                |                         |            |                    |                    |  |  |
|                |                         |            |                    |                    |  |  |
|                |                         |            |                    |                    |  |  |
|                |                         |            |                    |                    |  |  |
|                |                         |            |                    |                    |  |  |
|                |                         |            |                    |                    |  |  |
|                |                         |            |                    |                    |  |  |
|                |                         |            |                    |                    |  |  |
|                |                         |            |                    |                    |  |  |

#### **APROBACIÓN DE DOCUMENTOS**

| ENGIE ENERGIA<br>CHILE S.A.          |        |       |       |
|--------------------------------------|--------|-------|-------|
|                                      | NOMBRE | FIRMA | FECHA |
| COORDINADOR<br>ELÉCTRICO<br>NACIONAL |        |       |       |
|                                      | NOMBRE | FIRMA | FECHA |
| HAMEK INGENIEROS<br>ASOCIADOS S.A.C. |        |       |       |
|                                      | NOMBRE | FIRMA | FECHA |

| ESTE DOCUMENTO CONTIENE INFORMACIÓN PROPIETARIA Y NO PUEDE SER DUPLICADO, PROCESADO O CEDIDO A TERCEROS PARA UN USO DISTINTO AL DE ESTE<br>PROYECTO Y EL OBJETO PARA EL QUE HA SIDO PREVISTO SIN LA AUTORIZACIÓN ESCRITA DEL COORDINADOR ELÉCTRICO NACIONAL |  |                                |                            |   |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--------------------------------|----------------------------|---|--|
| Informe PROPIETARIO CONSULTORA Página №                                                                                                                                                                                                                     |  |                                |                            |   |  |
| <b>Versión</b> Final                                                                                                                                                                                                                                        |  | Coordinador Eléctrica Nacional | Hamek Ingenieros Asociados | 2 |  |

Versión Final

Coordinador Eléctrica Nacional

#### INFORME FINAL DE LAS PRUEBAS DE POTENCIA MÁXIMA CENTRAL HORNITOS UNIDAD GENERADORA CTH CON CARBÓN

## **CONTENIDO GENERAL**

| 1.       | INFORMACIÓN GENERAL7                                                                                                                                       |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | 1.1. Descripción de la Empresa                                                                                                                             |
|          | 1.2. Descripción de la Central Termoeléctrica Hornitos                                                                                                     |
| 2.       | OBJETIVO DE LOS PRUEBAS9                                                                                                                                   |
|          | 2.1. Pruebas de Potencia Máxima9                                                                                                                           |
| 3.       | PROGRAMA DE LAS PRUEBAS9                                                                                                                                   |
| 4.       | PARTICIPANTES EN LAS PRUEBAS Y ORGANIZACIÓN DEL PERSONAL 10                                                                                                |
| 5.       | CONDICIONES DE DISEÑO Y REFERENCIA10                                                                                                                       |
| 6.       | PUNTOS DE MEDICIÓN E INSTRUMENTACIÓN UTILIZADA11                                                                                                           |
|          | 6.1. Puntos de Medición requeridas para la unidad CTH11                                                                                                    |
|          | 6.2. Variables Medidas e Instrumentos de Medición12                                                                                                        |
| 7.       | METODOLOGÍA DE CÁLCULO12                                                                                                                                   |
|          | 7.1. Validación de datos                                                                                                                                   |
|          | 7.2. Cálculos de Potencia                                                                                                                                  |
|          | 7.2.1. Cálculo de la Potencia Bruta Máxima Medida de la Unidad CTH ( <i>PBMm</i> , τν)13                                                                   |
|          | 7.2.2. Cálculo de la Potencia Bruta Máxima corregida de la CTH ( <i>PBMc,Tv</i> )13                                                                        |
|          | 7.2.3. Cálculo de la Potencia Neta Máxima Medida de la Unidad CTH ( <i>PNMm,<sub>TV</sub></i> )15                                                          |
|          | 7.2.4. Cálculo de la Potencia Neta Máxima corregida de la Unidad CTH (PNMc, <sub>TV</sub> )15                                                              |
|          | 7.3. Cálculos de la Incertidumbre                                                                                                                          |
|          | 7.3.1. Incertidumbre Parcial de la Prueba                                                                                                                  |
|          | a) Cálculo de la Incertidumbre Sistemática Absoluta16                                                                                                      |
|          | b) Cálculo de la Incertidumbre Aleatoria Absoluta                                                                                                          |
|          | 7.3.2. Incertidumbre Total de la Prueba                                                                                                                    |
| 8.       | CÁLCULO DE POTENCIA MÁXIMA19                                                                                                                               |
| 9.       | RESULTADOS19                                                                                                                                               |
|          | 9.1. Resultados Parciales de la Prueba de Potencia Máxima                                                                                                  |
|          | 9.2. Resultados de Incertidumbre                                                                                                                           |
|          | 9.3. Resultados de la Prueba de Potencia Máxima21                                                                                                          |
|          | ESTE DOCUMENTO CONTIENE INFORMACIÓN PROPIETARIA Y NO PUEDE SER DUPLICADO, PROCESADO O CEDIDO A TERCEROS PARA UN USO DISTINTO AL DE ESTE                    |
| $\vdash$ | PROYECTO Y EL OBJETO PARA EL QUE HA SIDO PREVISTO SIN LA AUTORIZACIÓN ESCRITA DEL COORDINADOR ELÉCTRICO NACIONAL  Informe PROPIETARIO CONSULTORA Página Nº |

Hamek Ingenieros Asociados

## **APÉNDICES**

APÉNDICE A: Actas de Ensayo.

APÉNDICE B: Cuadros de Cálculo

APÉNDICE C: Protocolo de Pruebas

## **CONTENIDO DE CUADROS**

| CUADRO 2-1: Variables Medidas                                                         | 9  |
|---------------------------------------------------------------------------------------|----|
| CUADRO 3-1: Programa de Pruebas de la Unidad CTH                                      | 9  |
| CUADRO 5-1: Condiciones de Diseño y de Referencia                                     |    |
| CUADRO 6-1: Variables e Instrumentos de Medición Utilizados en las Pruebas            | 12 |
| CUADRO 7-1: Condiciones de estabilidad de la Prueba de Potencia Máxima                | 12 |
| CUADRO 9-1: Resultados Parciales de la Prueba de Potencia Máxima – CTH                | 19 |
| CUADRO 9-2: Resultados de la Incertidumbre – CTH                                      | 20 |
| CUADRO 9-3: Resultados de la Prueba de Potencia Máxima de la Unidad CTH de la Central |    |
| Termoeléctrica Hornitos                                                               | 21 |
|                                                                                       |    |

## **CONTENIDO DE FIGURAS**

| GRAFICO 4-1: Participantes y Organización del Personal durante las Pruebas | 10 |
|----------------------------------------------------------------------------|----|
| GRAFICO 6-1: Puntos de Medición de la prueba de la Unidad CTH              | 11 |

| ESTE DOCUI           | ESTE DOCUMENTO CONTIENE INFORMACIÓN PROPIETARIA Y NO PUEDE SER DUPLICADO, PROCESADO O CEDIDO A TERCEROS PARA UN USO DISTINTO AL DE ESTE<br>PROYECTO Y EL OBJETO PARA EL QUE HA SIDO PREVISTO SIN LA AUTORIZACIÓN ESCRITA DEL COORDINADOR ELÉCTRICO NACIONAL |                                |                            |   |  |  |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------|---|--|--|
| Infor                | Informe PROPIETARIO CONSULTORA Página №                                                                                                                                                                                                                     |                                |                            |   |  |  |
| <b>Versión</b> Final |                                                                                                                                                                                                                                                             | Coordinador Eléctrica Nacional | Hamek Ingenieros Asociados | 4 |  |  |

### **RESUMEN EJECUTIVO**

ENGIE Energía Chile es una empresa con presencia en los mercados de generación, transmisión y suministro de electricidad, transporte de gas e infraestructura portuaria. Sus principales clientes provienen de los sectores minería, industrial y de distribución eléctrica, tanto del norte como de la zona centro y sur del país. En 2020, sus ventas de energía ascendieron a 11.408 GWh, un aumento de 3% respecto del año 2019. La generación bruta durante el 2020 fue de 6.945 GWh, un 22% mayor que la de 2019, la participación del mercado de potencia de ENGIE en Chile es del 8% de los 26.1 GW de potencia instalados.

El presente informe contiene los resultados de las pruebas de Consumo Especifico Neto de la Unidad Generadora CTH, operando con Carbón.

Durante las pruebas se ha registrado los siguientes parámetros:

- Potencia bruta.
- Potencia neta.
- Factor de Potencia.
- Temperatura de Fuente Fría.

Condiciones de diseño y referencia:

**Tabla Nº 1**Condiciones de Diseño y de Referencia

| Ítem                      | FDP  | Temp.<br>Fuente Fría<br>(°C) |
|---------------------------|------|------------------------------|
| Condiciones de Diseño     | 0.85 | 18.00                        |
| Condiciones de Referencia | 0.95 | 18.00                        |

| ESTE DOCUI           | ESTE DOCUMENTO CONTIENE INFORMACIÓN PROPIETARIA Y NO PUEDE SER DUPLICADO, PROCESADO O CEDIDO A TERCEROS PARA UN USO DISTINTO AL DE ESTE<br>PROYECTO Y EL OBJETO PARA EL QUE HA SIDO PREVISTO SIN LA AUTORIZACIÓN ESCRITA DEL COORDINADOR ELÉCTRICO NACIONAL |                                |                            |   |  |  |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------|---|--|--|
| Infor                | Informe PROPIETARIO CONSULTORA Página №                                                                                                                                                                                                                     |                                |                            |   |  |  |
| <b>Versión</b> Final |                                                                                                                                                                                                                                                             | Coordinador Eléctrica Nacional | Hamek Ingenieros Asociados | 5 |  |  |



#### **RESULTADOS**

#### 1.1. Resultados de la Prueba de Potencia Máxima

#### Tabla Nº 2

Resultados de la Prueba de Potencia Máxima de la Unidad Generadora CTH

| ĺtem | Potencia<br>Bruta Medida | Potencia Bruta<br>Corregida | Potencia Neta<br>Medida | Potencia Neta<br>Corregida | Potencia Máxima<br>Corregida | Consumo<br>Auxiliares |
|------|--------------------------|-----------------------------|-------------------------|----------------------------|------------------------------|-----------------------|
|      | (kW)                     | (kW)                        | (kW)                    | (kW)                       | (kW)                         | (kW)                  |
| стн  | 174961,00                | 174259,45                   | 158312,00               | 157610,45                  | 174259,448 ± 190,05          | 15838,37              |

| ESTE DOCUI           | ESTE DOCUMENTO CONTIENE INFORMACIÓN PROPIETARIA Y NO PUEDE SER DUPLICADO, PROCESADO O CEDIDO A TERCEROS PARA UN USO DISTINTO AL DE ESTE PROYECTO Y EL OBJETO PARA EL QUE HA SIDO PREVISTO SIN LA AUTORIZACIÓN ESCRITA DEL COORDINADOR ELÉCTRICO NACIONAL |                                |                            |   |  |  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------|---|--|--|
| Informe PROPIETARIO  |                                                                                                                                                                                                                                                          | CONSULTORA                     | Página Nº                  |   |  |  |
| <b>Versión</b> Final |                                                                                                                                                                                                                                                          | Coordinador Eléctrica Nacional | Hamek Ingenieros Asociados | 6 |  |  |



## 1. INFORMACIÓN GENERAL

#### 1.1. Descripción de la Empresa

ENGIE Energía Chile es una empresa con presencia en los mercados de generación, transmisión y suministro de electricidad, transporte de gas e infraestructura portuaria. Sus principales clientes provienen de los sectores minería, industrial y de distribución eléctrica, tanto del norte como de la zona centro y sur del país. En 2020, sus ventas de energía ascendieron a 11.408 GWh, un aumento de 3% respecto del año 2019. La generación bruta durante el 2020 fue de 6.945 GWh, un 22% mayor que la de 2019, la participación del mercado de potencia de ENGIE en Chile es del 8% de los 26.1 GW de potencia instalados

#### 1.2. Descripción de la Central Termoeléctrica Hornitos

La unidad generadora CTH se encuentra dentro del Complejo Termoeléctrico Mejillones: en la región de Antofagasta Chile. Las características técnicas de las Unidad se indican a continuación

| ESTE DOCUI                 | ESTE DOCUMENTO CONTIENE INFORMACIÓN PROPIETARIA Y NO PUEDE SER DUPLICADO, PROCESADO O CEDIDO A TERCEROS PARA UN USO DISTINTO AL DE ESTE PROYECTO Y EL OBJETO PARA EL QUE HA SIDO PREVISTO SIN LA AUTORIZACIÓN ESCRITA DEL COORDINADOR ELÉCTRICO NACIONAL |                                |                            |   |  |  |  |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------|---|--|--|--|
| Informe PROPIETARIO CONSUL |                                                                                                                                                                                                                                                          | CONSULTORA                     | Página Nº                  |   |  |  |  |
| <b>Versión</b> Final       |                                                                                                                                                                                                                                                          | Coordinador Eléctrica Nacional | Hamek Ingenieros Asociados | 7 |  |  |  |



Tabla Nº 3: Descripción de las Unidad CTH

| Tabla N 3. Descript             |                    | 0111              |
|---------------------------------|--------------------|-------------------|
| Concepto                        | Unidad             | Unidad CTH        |
| Turbina                         | a a vapor¹         |                   |
| Marca                           |                    | SKODA             |
| Fabricante                      |                    | SKODA             |
| Tipo de Unidad                  |                    | Turbina a vapor   |
| Año de Fabricación              | Año                | 2009              |
| Fecha de Entrada en Operación   | Año                | 15/07/2011        |
| Potencia Máxima Bruta           | MW                 | 165               |
| Potencia Neta Efectiva          | MW                 | 160.8             |
| Generad                         | or Eléctrico²      |                   |
|                                 |                    |                   |
| Potencia Nominal                | MWA                | 206.3             |
| Tensión Nominal                 | kV                 | 15.75             |
| Factor de Potencia              | -                  | 0.85              |
| Velocidad de Rotación Turbina   | RPM                | 3000              |
| Velocidad de Rotación Generador | RPM                | 3000              |
| Ca                              | ldera <sup>3</sup> |                   |
| Marca                           |                    | Foster Wheeler    |
| Modelo                          |                    | Lecho Fluizado    |
| Año de fabricación              |                    | 2009              |
| Año de instalación              |                    | 2010              |
| Combustible                     |                    | Carbón bituminoso |
| Temperatura Nominal del vapor   | °C                 | 560               |
| Presión Nominal del vapor       | Bar                | 165               |

https://infotecnica.coordinador.cl/instalaciones/unidades-generadoras?id\_propietario=399

https://infotecnica.coordinador.cl/instalaciones/unidades-generadoras?id\_propietario=399

<sup>3</sup> Información extraída del Informe de Medición de Gases – Informe N° 460A-2020 y Heat balance para la operación "Máximum Continuos Rate

| ESTE DOCUMENTO CONTIENE INFORMACIÓN PROPIETARIA Y NO PUEDE SER DUPLICADO, PROCESADO O CEDIDO A TERCEROS PARA UN USO DISTINTO AL DE ESTE |                                                                                                                  |                                |                            |           |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------|-----------|--|--|
|                                                                                                                                         | PROYECTO Y EL OBJETO PARA EL QUE HA SIDO PREVISTO SIN LA AUTORIZACIÓN ESCRITA DEL COORDINADOR ELÉCTRICO NACIONAL |                                |                            |           |  |  |
| Informe                                                                                                                                 |                                                                                                                  | PROPIETARIO                    | CONSULTORA                 | Página Nº |  |  |
| <b>Versión</b> Final                                                                                                                    |                                                                                                                  | Coordinador Eléctrica Nacional | Hamek Ingenieros Asociados | 8         |  |  |

<sup>&</sup>lt;sup>1</sup> Información extraída desde:

<sup>&</sup>lt;sup>2</sup> Información extraída desde:



### 2. OBJETIVO DE LOS PRUEBAS

#### 2.1. Pruebas de Potencia Máxima

Estos ensayos tienen por objeto contar con toda la información necesaria para calcular la potencia máxima de la central térmica bajo condiciones de estabilidad requeridas. Durante los ensayos se ha medido los siguientes parámetros:

**CUADRO 2-1: Variables Medidas** 

| Ítem | Variables                                                          | Turbina de<br>Vapor |  |  |  |  |  |
|------|--------------------------------------------------------------------|---------------------|--|--|--|--|--|
|      | Variables ambientales                                              |                     |  |  |  |  |  |
| a)   | Temperatura de fuente fría (temperatura de entrada de agua de mar) | ✓                   |  |  |  |  |  |
|      | Variables eléctricas                                               |                     |  |  |  |  |  |
| a)   | Potencia bruta medida (potencia activa bruta)                      | ✓                   |  |  |  |  |  |
| b)   | Factor de Potencia Bruta                                           | ✓                   |  |  |  |  |  |
| c)   | Potencia neta medida (Potencia Activa Neta)                        | ✓                   |  |  |  |  |  |
| d)   | Potencia en auxiliares                                             | ✓                   |  |  |  |  |  |

### 3. PROGRAMA DE LAS PRUEBAS

Luego de coordinaciones previas y a la luz de las condiciones encontradas en las unidades se definió finalmente los cronogramas que se indican en el Acta de Ensayo, del cual se indica en el siguiente cuadro el programa general de ensayos.

CUADRO 3-1: Programa de Pruebas de la Unidad CTH

| Unidad                     | Fecha de Prueba | Condición de Carga | Hora de Inicio | Hora de Finalización |
|----------------------------|-----------------|--------------------|----------------|----------------------|
| CTH<br>Operando con Carbón | 17-Marzo-2022   | Carga Base         | 00:15          | 05:15                |

| ESTE DOCUI             | ESTE DOCUMENTO CONTIENE INFORMACIÓN PROPIETARIA Y NO PUEDE SER DUPLICADO, PROCESADO O CEDIDO A TERCEROS PARA UN USO DISTINTO AL DE ESTE PROYECTO Y EL OBJETO PARA EL QUE HA SIDO PREVISTO SIN LA AUTORIZACIÓN ESCRITA DEL COORDINADOR ELÉCTRICO NACIONAL |                                |                            |   |  |  |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------|---|--|--|
| Informe PROPIETARIO CO |                                                                                                                                                                                                                                                          | CONSULTORA                     | Página Nº                  |   |  |  |
| <b>Versión</b> Final   |                                                                                                                                                                                                                                                          | Coordinador Eléctrica Nacional | Hamek Ingenieros Asociados | 9 |  |  |



Asist: Alfredo Valladares

# 4. PARTICIPANTES EN LAS PRUEBAS Y ORGANIZACIÓN DEL PERSONAL

Durante las pruebas han participado, el representante de ENGIE ENERGÍA CHILE S.A., el Experto Técnico y el Asistente de la CONSULTORA; como se indica en el siguiente gráfico.

Experto Técnico
HAMEK
Ing. Amadeo Carrillo

Especialista y Asistente
Esp: Erly Fernandez

Representante de
ENGIE ENERGIA CHILE S.A.
Ing. Marco Velarde

Responsable de las
Mediciones Eléctricas
Personal Central

Responsable de las
Mediciones Ambientales

Termoeléctrica Hornitos

Termoeléctrica Hornitos

GRAFICO 4-1: Participantes y Organización del Personal durante las Pruebas

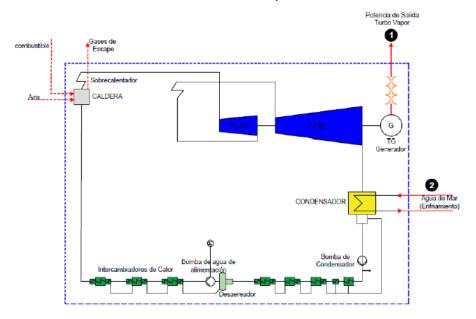
## 5. CONDICIONES DE DISEÑO Y REFERENCIA

Según el Artículo 34 del Anexo Técnico, la Potencia Máxima Bruta Medida en la prueba correspondiente, podrá ser corregida a fin de homologarla con los valores de referencia para los cuales fue calculada la potencia original de garantía.

Las condiciones de diseño y referencia a las cuales hay que corregir la Potencia Máxima Medida son los que se indican en la siguiente tabla.

CUADRO 5-1: Condiciones de Diseño y de Referencia

| ĺtem                      | FDP  | Temp.<br>Fuente Fría<br>(°C) |
|---------------------------|------|------------------------------|
| Condiciones de Diseño     | 0.85 | 18.00                        |
| Condiciones de Referencia | 0.95 | 18.00                        |


| ESTE DOCUMENTO CONTIENE INFORMACIÓN PROPIETARIA Y NO PUEDE SER DUPLICADO, PROCESADO O CEDIDO A TERCEROS PARA UN USO DISTINTO AL DE ESTE |                                                                                                                  |                                |                            |           |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------|-----------|--|--|
|                                                                                                                                         | PROYECTO Y EL OBJETO PARA EL QUE HA SIDO PREVISTO SIN LA AUTORIZACIÓN ESCRITA DEL COORDINADOR ELÉCTRICO NACIONAL |                                |                            |           |  |  |
| Informe                                                                                                                                 |                                                                                                                  | PROPIETARIO                    | CONSULTORA                 | Página Nº |  |  |
| Versión Final                                                                                                                           |                                                                                                                  | Coordinador Eléctrica Nacional | Hamek Ingenieros Asociados | 10        |  |  |



# 6. PUNTOS DE MEDICIÓN E INSTRUMENTACIÓN UTILIZADA

#### 6.1. Puntos de Medición requeridas para la unidad CTH

GRAFICO 6-1: Puntos de Medición de la prueba de la Unidad CTH



Para la obtención de los resultados corregidos, acorde con la frontera de prueba graficado anteriormente se requiere las siguientes mediciones:

- 1. Condiciones del absorbente de calor, en este caso siendo un ciclo de enfriamiento abierto corresponde a la temperatura del agua circulante (agua de mar), en el punto en donde cruza la frontera de prueba.
- 2. Potencia de salida del generador de la turbina a vapor.

| ESTE DOCUI                                                                                 | ESTE DOCUMENTO CONTIENE INFORMACIÓN PROPIETARIA Y NO PUEDE SER DUPLICADO, PROCESADO O CEDIDO A TERCEROS PARA UN USO DISTINTO AL DE ESTE PROYECTO Y EL OBJETO PARA EL QUE HA SIDO PREVISTO SIN LA AUTORIZACIÓN ESCRITA DEL COORDINADOR ELÉCTRICO NACIONAL |                                               |                                                         |           |  |  |  |
|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------|-----------|--|--|--|
|                                                                                            | PROTECTO                                                                                                                                                                                                                                                 | EL OBJETO PARA EL QUE HA SIDO PREVISTO SIN LA | AUTORIZACION ESCRITA DEL COORDINADOR ELECTRICO NACIONAL |           |  |  |  |
| Informe                                                                                    |                                                                                                                                                                                                                                                          | PROPIETARIO                                   | CONSULTORA                                              | Página Nº |  |  |  |
| Versión         Final         Coordinador Eléctrica Nacional         Hamek Ingenieros Asoc |                                                                                                                                                                                                                                                          | Hamek Ingenieros Asociados                    | 11                                                      |           |  |  |  |

#### 6.2. Variables Medidas e Instrumentos de Medición

CUADRO 6-1: Variables e Instrumentos de Medición Utilizados en las Pruebas

| Variables medidas                                   | Parámetros       | Marca        | Modelo        | Serie     |  |  |  |
|-----------------------------------------------------|------------------|--------------|---------------|-----------|--|--|--|
| Potencia Bruta                                      |                  |              |               |           |  |  |  |
| Parámetros eléctricos: Potencia, factor de potencia | СТН              | HIOKI        | PW3198        | 150930573 |  |  |  |
|                                                     | Potencia Neta    |              |               |           |  |  |  |
| Parámetros eléctricos: Potencia, factor de potencia | СТН              | HIOKI        | PQ3198        | 190630405 |  |  |  |
|                                                     | Potencia Servici | os Axuliares |               |           |  |  |  |
| Parámetros eléctricos: Potencia, factor de potencia | СТН              | HIOKI        | PW3198        | 150930574 |  |  |  |
|                                                     | Parámetros Ag    | gua de Mar   |               |           |  |  |  |
| Presión                                             |                  | Vaisala      | PTB110        | T3540601  |  |  |  |
| Temperatura                                         | Agua de Mar      | Concor       | 225-HMP60-A   | T2320593  |  |  |  |
| Humedad                                             |                  | Sensor       | 220-NIVIP6U-A | 12320593  |  |  |  |

## 7. METODOLOGÍA DE CÁLCULO

#### 7.1. Validación de datos

Las mediciones de las Variables Primarias, cuyos datos registrados se encuentren fuera de los rangos de fluctuación indicados en el Cuadro 7-1, serán eliminados. Respecto a los datos que serán eliminados, se debe condicionar la prueba a la estabilidad exigida, solo se aceptará eliminar datos fuera de este rango por errores del instrumento o peak de lectura no atribuibles al sistema de control u operación normal de la unidad.

Las mediciones válidas serán todas las mediciones efectuadas menos las mediciones eliminadas.

CUADRO 7-1: Condiciones de estabilidad de la Prueba de Potencia Máxima

| Parámetro                                         | Máxima fluctuación respecto al valor promedio |
|---------------------------------------------------|-----------------------------------------------|
| Potencia eléctrica de salida                      | ± 0.35 %                                      |
| Factor de Potencia                                | ± 1.0 %                                       |
| Velocidad de rotación                             | ± 0.15 %                                      |
| Presión de vapor inicial (vapor vivo)             | ± 0.32 %                                      |
| Temperatura de vapor inicial y de recalentamiento | ± 0.8 K y ± 1.17 K                            |
| Presión de vacío en el condensador                | ± 3.0 %                                       |

| ESTE I                                                                 | ESTE DOCUMENTO CONTIENE INFORMACIÓN PROPIETARIA Y NO PUEDE SER DUPLICADO, PROCESADO O CEDIDO A TERCEROS PARA UN USO DISTINTO AL DE ESTE PROYECTO Y EL OBJETO PARA EL QUE HA SIDO PREVISTO SIN LA AUTORIZACIÓN ESCRITA DEL COORDINADOR ELÉCTRICO NACIONAL |                            |                                               |                                                         |           |  |  |
|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------|---------------------------------------------------------|-----------|--|--|
|                                                                        |                                                                                                                                                                                                                                                          | PROYECTO                   | EL OBJETO PARA EL QUE HA SIDO PREVISTO SIN LA | AUTURIZACION ESCRITA DEL COORDINADOR ELECTRICO NACIONAL |           |  |  |
| Informe                                                                |                                                                                                                                                                                                                                                          | me                         | PROPIETARIO                                   | CONSULTORA                                              | Página Nº |  |  |
| Versión         Final         Coordinador Eléctrica Nacional         H |                                                                                                                                                                                                                                                          | Hamek Ingenieros Asociados | 12                                            |                                                         |           |  |  |



#### 7.2. Cálculos de Potencia

## 7.2.1. Cálculo de la Potencia Bruta Máxima Medida de la Unidad CTH (PBMm, TV)

Para los datos validados se determinará la potencia máxima bruta considerando igual al promedio horario de la potencia bruta medida en los bornes del generador, donde cada promedio horario, es a su vez el promedio de mediciones de potencia tomadas cada 5 minutos.

$$PBM_{m,TV} = \frac{\sum_{i=1}^{n} PBM_{m,TV_{i}}}{n}$$

#### 7.2.2. Cálculo de la Potencia Bruta Máxima corregida de la CTH (PBMc, TV)

$$PBM_{C,TV} = (PBM_{mTV} + \Delta FP_{TV}) \times \alpha_1$$

Donde:

 $PBM_{m,TV}$ : Potencia bruta medida en bornes del generador de la TV, en kW

 $\Delta FP_{TV} = LPF_{TV,prueba} - LPF_{TV,ref}$ 

 $\Delta FP_{TG}$ : Correcciones por pérdidas del generador de la TV por diferencia

del factor de potencia

 $\mathit{LPF}_{\mathit{TV},\mathit{prueba}}$ : Pérdida del generador de la TV a la potencia bruta máxima y el

factor de potencia medida durante las pruebas de la TV, según curvas del

generador, en kW.

 $LPF_{TV,ref}$ : Pérdida del generador de la TV a la potencia bruta máxima y el

factor de potencia a las condiciones de referencia de la TV, según curvas

del generador, en kW.

 $\alpha_1$  : Factor de corrección por temperatura de agua de mar (Temperatura de

Fuente Fría)

Donde: 
$$\alpha_1 = (1 + \frac{\Delta Nel}{100})$$

PBMc,<sub>TV</sub>: Potencia bruta corregida de la TV, para condiciones de referencia, en kW.

Para obtener el factor de corrección por las pérdidas en el condensador debido a la temperatura de agua de mar, utilizar el siguiente proceso iterativo:

| ESTE DOCUMENTO CONTIENE INFORMACIÓN PROPIETARIA Y NO PUEDE SER DUPLICADO, PROCESADO O CEDIDO A TERCEROS PARA UN USO DISTINTO AL DE ESTE<br>PROYECTO Y EL OBJETO PARA EL QUE HA SIDO PREVISTO SIN LA AUTORIZACIÓN ESCRITA DEL COORDINADOR ELÉCTRICO NACIONAL |  |                                |                            |           |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--------------------------------|----------------------------|-----------|--|
| Informe                                                                                                                                                                                                                                                     |  | PROPIETARIO                    | CONSULTORA                 | Página Nº |  |
| Versión Final Coordinador Eléctrica Naci                                                                                                                                                                                                                    |  | Coordinador Eléctrica Nacional | Hamek Ingenieros Asociados | 13        |  |



#### Paso 1

Utilizando el conjunto de curvas "Foster Wheeler Predicted Performance Curves" del anexo 8.10 se determina una presión inicial en el condensador, PCONDITER. Para conseguir lo anterior, se procede de la siguiente manera:

La entrada del eje "X": Carga de calor del condensador, QDUTY se supone igual a la de diseño del condensador QDESIGNDUTY, por lo tanto: QDUTY = QDESIGNDUTY = 187,09 MW o 673.5 x 106 kJ/hr.

También se define la potencia bruta de diseño del generador, PGDESIGN como 165 MW.

Y la temperatura del agua de mar seleccionada será la temperatura promedio horario medida durante la prueba en grados centígrados.

#### Paso 2

Con la presión inicial obtenida en el paso anterior ( $P_{CONDITER}$ ) y utilizando la curva "Skoda Correction for Nel vs. Backpressure" se determina  $\Delta$ Nel.

#### Paso 3

El primer resultado ∆Nel será utilizado para calcular una iteración de la potencia bruta corregida (PG⊓ER) mediante la siguiente formula.

$$PG_{ITER} = PG x (1 + \frac{\Delta Nel}{100})$$

#### Paso 4

La relación del balance de energía siguiente es utilizada para verificar el cálculo:

QITERDUTY = QDESIGNDUTY + PGDESIGN — PGITER

En donde, QITERDUTY = Rechazo de calor iterado en el condensador.

#### Paso 5

QITERDUTY, la carga de calor calculada del condensador deberá ser igual a QDUTY, la carga de calor real del condensador a las condiciones de la prueba.

| ESTE DOCUMENTO CONTIENE INFORMACIÓN PROPIETARIA Y NO PUEDE SER DUPLICADO, PROCESADO O CEDIDO A TERCEROS PARA UN USO DISTINTO AL DE ESTE<br>PROYECTO Y EL OBJETO PARA EL QUE HA SIDO PREVISTO SIN LA AUTORIZACIÓN ESCRITA DEL COORDINADOR ELÉCTRICO NACIONAL |  |                                |                            |           |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--------------------------------|----------------------------|-----------|--|
| Informe                                                                                                                                                                                                                                                     |  | PROPIETARIO                    | CONSULTORA                 | Página Nº |  |
| Versión Final Coordinador Eléctrica Nacional                                                                                                                                                                                                                |  | Coordinador Eléctrica Nacional | Hamek Ingenieros Asociados | 14        |  |



Si la diferencia anterior es menor de 2.5 MW el proceso ha convergido, si no, QDUTY es modificado y el proceso se repite desde el paso 1.

Se realizan iteraciones QDUTY= QITERDUTY hasta alcanzar la convergencia. Cuando la convergencia se alcanza, la siguiente magnitud queda definida:

 $\Delta$ CLCWT =  $\Delta$ Nel

## 7.2.3. Cálculo de la Potencia Neta Máxima Medida de la Unidad CTH (PNMm,TV)

Para los datos validados se determinará la potencia máxima neta medida considerando igual al promedio horario de la potencia neta medida en el lado de alto voltaje del transformador, donde cada promedio horario, es a su vez el promedio de mediciones de potencia tomadas cada 5 minutos.

$$PNM_{m,TV} = \frac{\sum_{i=1}^{n} PNM_{m,TV_{i}}}{n}$$

## 7.2.4. Cálculo de la Potencia Neta Máxima corregida de la Unidad CTH (PNMc,TV)

$$PNM_{C,TV} = PBM_{C,TV} - (L_{AUX} + L_{EXC} + L_{TRAFO})_{TV}$$

Donde:

PNMc,<sub>TV</sub>: Potencia Neta Máxima Corregida de la TV, en kW PBMc,<sub>TV</sub>: Potencia Bruta Máxima Corregida de la TV, en kW

L<sub>AUX</sub> : Pérdidas en auxiliares de la TV, en kW

L<sub>EXC</sub>: Pérdidas en la excitatriz L<sub>TRAFO</sub>: Pérdidas en el transformador

Siendo:

 $(L_{AUX} + L_{EXC} + L_{TRAFO})_{TV} = PBM_{m,TV} - PNM_{m,TV}$ 

#### 7.3. Cálculos de la Incertidumbre

La incertidumbre del resultado de la prueba, es un cálculo matemático que calcula con una confianza específica, el rango dentro del cual se encuentra los resultados reales.

Según la norma ASME PTC 19.1 "Test Uncertainty"; para la unidad que estamos evaluando en el modo de ciclo simple y ciclo combinado, la incertidumbre más grande deseada es igual a 0.8%.

A continuación, se muestra la metodología utilizada en el cálculo de la Incertidumbre de la Potencia Máxima Corregida.

| ESTE DOCUMENTO CONTIENE INFORMACIÓN PROPIETARIA Y NO PUEDE SER DUPLICADO, PROCESADO O CEDIDO A TERCEROS PARA UN USO DISTINTO AL DE ESTE<br>PROYECTO Y EL OBJETO PARA EL QUE HA SIDO PREVISTO SIN LA AUTORIZACIÓN ESCRITA DEL COORDINADOR ELÉCTRICO NACIONAL |  |                                |                            |           |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--------------------------------|----------------------------|-----------|--|
| Informe                                                                                                                                                                                                                                                     |  | PROPIETARIO                    | CONSULTORA                 | Página Nº |  |
| Versión Final Coordinador Eléctrica Nacional                                                                                                                                                                                                                |  | Coordinador Eléctrica Nacional | Hamek Ingenieros Asociados | 15        |  |



#### 7.3.1. Incertidumbre Parcial de la Prueba

El cálculo de la incertidumbre total de una prueba, así como la composición de la incertidumbre sistemática y aleatoria, se obtendrán de la siguiente expresión:

$$U_R = \sqrt{B_R^2 + (t.S_R)^2}$$

Donde el primer término corresponde a la contribución de la incertidumbre sistemática y el segundo, a la del azar.

La expresión anterior nos muestra la incertidumbre absoluta, es decir, en la unidad del resultado de la prueba (Potencia Máxima Corregida), para calcular la incertidumbre relativa porcentual se aplica lo siguiente:

$$U_R\% = \frac{U_R}{R}$$

#### a) Cálculo de la Incertidumbre Sistemática Absoluta

La incertidumbre sistemática se calcula con la siguiente expresión:

$$B_R = \sqrt{\sum_i (\theta_i.B_{\bar{P}i})^2}$$

Donde:

B<sub>R</sub> = Incertidumbre sistemática Absoluta.

 $\theta_i$  = Coeficiente de sensibilidad absoluto.

 $B_{\bar{p}i}$  = Incertidumbre sistemática Instrumental de cada variable individual.

 La sumatorio al ejecutar todas las variables que intervienen en el cálculo del resultado. (Potencia Bruta, Factor de potencia, Temperatura Ambiente, Presión Barométrica, Humedad Relativa y Temperatura de fuente fría)

La incertidumbre Sistemática Instrumental de cada variable que interviene en el cálculo del resultado final se obtendrá de:

$$B_{\bar{P}i} = \frac{Precisi\'{o}n\%}{100} \cdot \bar{X}_i$$

El coeficiente de sensibilidad absoluto se obtendrá de:

| ESTE DOCUMENTO CONTIENE INFORMACIÓN PROPIETARIA Y NO PUEDE SER DUPLICADO, PROCESADO O CEDIDO A TERCEROS PARA UN USO DISTINTO AL DE ESTE<br>PROYECTO Y EL OBJETO PARA EL QUE HA SIDO PREVISTO SIN LA AUTORIZACIÓN ESCRITA DEL COORDINADOR ELÉCTRICO NACIONAL |  |                                |                            |           |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--------------------------------|----------------------------|-----------|--|
| Informe                                                                                                                                                                                                                                                     |  | PROPIETARIO                    | CONSULTORA                 | Página Nº |  |
| Versión Final Coordinador Eléctrica Nacional                                                                                                                                                                                                                |  | Coordinador Eléctrica Nacional | Hamek Ingenieros Asociados | 16        |  |



$$\theta_i = \frac{\partial R}{\partial \bar{X}_i} \approx \frac{\Delta R}{\overline{\Delta X}_i}$$

Así también, el coeficiente de sensibilidad relativa se obtendrá de:

$$\theta_{i}' = \frac{\bar{X}_{i}}{R} \cdot \frac{\partial R}{\partial \bar{X}_{i}}$$

Donde:

 $\bar{X}_i$  = Valor medio de la variable obtenida durante la prueba.

R = Resultado de los cálculos de la prueba. (Potencia Máxima corregida)

El valor de  $\bar{X}_i$ , llamado Valor Medio, será calculado de acuerdo a la siguiente ecuación:

$$\bar{X}_i = \frac{1}{N_j} \cdot \sum_{k=1}^{N_j} X_{ik}$$

Donde:

 $N_i$  = Número total de lecturas de la variable i

 $X_{ik}$  = Valor de la lectura k de la variable i

k = La sumatorio al ejecutar todas las lecturas registradas durante la prueba

de la variable i

#### b) Cálculo de la Incertidumbre Aleatoria Absoluta

La incertidumbre aleatoria absoluta se dará por:

$$tS_R = \sqrt{\sum_{i} (\theta_i. S_{\bar{x}i}. t_{95,v})^2}$$

Donde:

 $tS_R$  = Incertidumbre aleatoria Absoluta.

 $S_{\bar{x}i}$  = Desviación estándar de la media de la variable Xi.

 $t_{95,v}$  = t Student's con 95% de Confiabilidad y  $v = N_j - 1$  grados de libertad.

La desviación estándar de la media se obtendrá de:

$$S_{\bar{X}i} = \frac{1}{\sqrt{N_j}} \sqrt{\sum_{k=1}^{N_j} \frac{(X_{ik} - \bar{X}_i)^2}{N_j - 1}}$$

| ESTE DOCUI | ESTE DOCUMENTO CONTIENE INFORMACIÓN PROPIETARIA Y NO PUEDE SER DUPLICADO, PROCESADO O CEDIDO A TERCEROS PARA UN USO DISTINTO AL DE ESTE<br>PROYECTO Y EL OBJETO PARA EL QUE HA SIDO PREVISTO SIN LA AUTORIZACIÓN ESCRITA DEL COORDINADOR ELÉCTRICO NACIONAL |             |                            |           |  |  |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------|-----------|--|--|--|
| Informe    |                                                                                                                                                                                                                                                             | PROPIETARIO | CONSULTORA                 | Página Nº |  |  |  |
| Versión    | Versión         Final         Coordinador Eléctrica Nacional                                                                                                                                                                                                |             | Hamek Ingenieros Asociados | 17        |  |  |  |



#### 7.3.2. Incertidumbre Total de la Prueba

La incertidumbre total de la Prueba o Incertidumbre de la Potencia Máxima es calculada como:

$$U_P = \sqrt{B_{Ave}^2 + (t.R_{StDev})^2}$$

La expresión anterior nos muestra la incertidumbre absoluta, es decir, en la unidad del resultado de la prueba (Potencia Máxima Corregida), para calcular la incertidumbre relativa porcentual se aplica lo siguiente:

$$U_P\% = \frac{U_P}{R_{Ave}}$$

Donde la Incertidumbre Sistemática Absoluta de la Potencia Máxima Corregida ( $B_{Ave}$ ) es el promedio de  $B_R$  de cada prueba parcial realizada, se obtiene de:

$$B_{Ave} = \frac{1}{N_p} \sum_{k=1}^{N_p} B_R$$

La Incertidumbre Aleatoria de la Potencia Máxima Corregida  $(t.R_{StDev})$  se estima del producto de Student´s t (con 95% de confiabilidad y  $N_p$ -1 grados de libertad) y la desviación estándar de la media de los valores de Potencia Máxima Corregida del total de pruebas parciales.

La desviación estándar de la media de potencia Máxima Corregida, se obtendrá de:

$$R_{StDev} = \frac{1}{\sqrt{N_p}} \sqrt{\sum_{k=1}^{N_p} \frac{(R_k - R_{Ave})^2}{N_p - 1}}$$

Donde:

 $R_{Ave}$  = Potencia Bruta Corregida parcial

$$R_{Ave} = \frac{1}{N_p} \sum_{k=1}^{N_p} R_k$$

 $R_k$  = Valor Medio de la Potencia Bruta Corregida de cada prueba parcial realizada.

 $N_p$  = Número de pruebas parciales.

| ESTE DOCUI                                   | ESTE DOCUMENTO CONTIENE INFORMACIÓN PROPIETARIA Y NO PUEDE SER DUPLICADO, PROCESADO O CEDIDO A TERCEROS PARA UN USO DISTINTO AL DE ESTE PROYECTO Y EL OBJETO PARA EL QUE HA SIDO PREVISTO SIN LA AUTORIZACIÓN ESCRITA DEL COORDINADOR ELÉCTRICO NACIONAL |                                |                            |           |  |  |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------|-----------|--|--|
| Informe                                      |                                                                                                                                                                                                                                                          | PROPIETARIO                    | CONSULTORA                 | Página Nº |  |  |
| Versión Final Coordinador Eléctrica Nacional |                                                                                                                                                                                                                                                          | Coordinador Eléctrica Nacional | Hamek Ingenieros Asociados | 18        |  |  |

## 8. CÁLCULO DE POTENCIA MÁXIMA

Los cuadros de cálculo de la prueba de Potencia Máxima de la Central Hornitos – Unidad Generadora CTH – operando con Carbón, se muestran en el Apéndice B.

## 9. RESULTADOS

#### 9.1. Resultados Parciales de la Prueba de Potencia Máxima

CUADRO 9-1: Resultados Parciales de la Prueba de Potencia Máxima - CTH

|                           |                | 1 <sup>ra</sup> Prueba | 2 <sup>da</sup> Prueba | 3 <sup>ra</sup> Prueba | 4 <sup>ta</sup> Prueba | 5 <sup>ta</sup> Prueba |
|---------------------------|----------------|------------------------|------------------------|------------------------|------------------------|------------------------|
|                           | Fecha          | 17/03/2022             | 17/03/2022             | 17/03/2022             | 17/03/2022             | 17/03/2022             |
|                           | Hora<br>Inicio | 12:15 AM               | 01:15 AM               | 02:15 AM               | 03:15 AM               | 04:15 AM               |
|                           | Hora Fin       | 01:15 AM               | 02:15 AM               | 03:15 AM               | 04:15 AM               | 05:15 AM               |
| Potencia Máxima Corregida | [kW]           | 174247,371             | 174350,976             | 174247,554             | 174191,310             | 174260,027             |
| Potencia Bruta Medida     | [kW]           | 175038,333             | 175051,667             | 174863,333             | 174851,667             | 175000,000             |
| Potencia Bruta Corregida  | [kW]           | 174247,371             | 174350,976             | 174247,554             | 174191,310             | 174260,027             |
| Potencia Neta Medida      | [kW]           | 158386,667             | 158380,000             | 158178,333             | 158175,000             | 158440,000             |
| Potencia Neta Corregida   | [kW]           | 157595,704             | 157679,309             | 157562,554             | 157514,644             | 157700,027             |
| Consumo Auxiliares        | [kW]           | 15835,333              | 15857,500              | 15871,000              | 15866,667              | 15761,333              |
| Incertidumbre Absoluta    | [kW]           | 446,258                | 399,433                | 425,645                | 437,782                | 310,024                |
| Incertidumbre Relativa    | [%]            | 0,256                  | 0,229                  | 0,244                  | 0,251                  | 0,178                  |

| ESTE DOCUMENTO CONTIENE INFORMACIÓN PROPIETARIA Y NO PUEDE SER DUPLICADO, PROCESADO O CEDIDO A TERCEROS PARA UN USO DISTINTO AL DE ESTE<br>PROYECTO Y EL OBJETO PARA EL QUE HA SIDO PREVISTO SIN LA AUTORIZACIÓN ESCRITA DEL COORDINADOR ELÉCTRICO NACIONAL |  |                                |                            |           |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--------------------------------|----------------------------|-----------|--|--|
| Informe                                                                                                                                                                                                                                                     |  | PROPIETARIO                    | CONSULTORA                 | Página Nº |  |  |
| Versión Final Coordinador Eléctrica Nacio                                                                                                                                                                                                                   |  | Coordinador Eléctrica Nacional | Hamek Ingenieros Asociados | 19        |  |  |

#### 9.2. Resultados de Incertidumbre

CUADRO 9-2: Resultados de la Incertidumbre - CTH

| Descripción                                    | Valor Nominal  | <b>PBM</b> ccc<br>Potencia<br>Bruta<br>Corregida | Unidad | <b>B</b> <sub>R</sub><br>Incertidumbre<br>Sistemático de<br>Cada Prueba | <b>t S</b> <sub>R</sub><br>Incertidumbre<br>Aleatorio de<br>Cada Prueba | U <sub>R</sub><br>Incertidumbre<br>Absoluta Total<br>de Cada<br>Prueba |
|------------------------------------------------|----------------|--------------------------------------------------|--------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------|
| Potencia Bruta Corregida - Primera Prueba      | 165000         | 174247,371                                       | kW     | 176,910                                                                 | 409,694                                                                 | 446,258                                                                |
| Potencia Bruta Corregida - Segunda Prueba      | 165000         | 174350,976                                       | kW     | 175,999                                                                 | 358,568                                                                 | 399,433                                                                |
| Potencia Bruta Corregida - Tercera Prueba      | 165000         | 174247,554                                       | kW     | 175,443                                                                 | 387,805                                                                 | 425,645                                                                |
| Potencia Bruta Corregida - Cuarta Prueba       | 165000         | 174191,310                                       | kW     | 175,573                                                                 | 401,032                                                                 | 437,782                                                                |
| Potencia Bruta Corregida - Quinta Prueba       | 165000         | 174260,027                                       | kW     | 176,269                                                                 | 255,038                                                                 | 310,024                                                                |
| Promedio de Potencia Bruta Corregida           | -              | 174259,448                                       | kW     | _                                                                       | -                                                                       |                                                                        |
| Desviación Estándar de Potencia Bruta Correg   | ida            | 25,795                                           | kW     |                                                                         |                                                                         |                                                                        |
| Student´s t de Potencia Bruta Corregida        |                | 2,7765                                           | kW     |                                                                         |                                                                         |                                                                        |
| Incertidumbre Sistemática de la Potencia Brut  | a Corregida    |                                                  | kW     | 176,039                                                                 |                                                                         |                                                                        |
| Incertidumbre Aleatoria de la Potencia Bruta ( | Corregida      |                                                  | kW     |                                                                         | 71,620                                                                  |                                                                        |
| Incertidumbre Absoluta total de la Potencia B  | ruta Corregida |                                                  | kW     |                                                                         |                                                                         | 190,050                                                                |
| Incertidumbre Relativa total de la Potencia Br | uta Corregida  |                                                  | %      |                                                                         |                                                                         | 0,109                                                                  |

| ESTE DOCUMENTO CONTIENE INFORMACIÓN PROPIETARIA Y NO PUEDE SER DUPLICADO, PROCESADO O CEDIDO A TERCEROS PARA UN USO DISTINTO AL DE ESTE |  |                                |                            |    |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|--|--------------------------------|----------------------------|----|--|--|
| PROYECTO Y EL OBJETO PARA EL QUE HA SIDO PREVISTO SIN LA AUTORIZACIÓN ESCRITA DEL COORDINADOR ELÉCTRICO NACIONAL                        |  |                                |                            |    |  |  |
| Informe                                                                                                                                 |  | PROPIETARIO                    | CONSULTORA                 |    |  |  |
| <b>Versión</b> Final                                                                                                                    |  | Coordinador Eléctrica Nacional | Hamek Ingenieros Asociados | 20 |  |  |



#### 9.3. Resultados de la Prueba de Potencia Máxima

#### CUADRO 9-3: Resultados de la Prueba de Potencia Máxima de la Unidad CTH

| Ítem | Potencia     | Potencia Bruta | Potencia Neta | Potencia Neta | Potencia Máxima     | Consumo    |
|------|--------------|----------------|---------------|---------------|---------------------|------------|
|      | Bruta Medida | Corregida      | Medida        | Corregida     | Corregida           | Auxiliares |
|      | (kW)         | (kW)           | (kW)          | (kW)          | (kW)                | (kW)       |
| СТН  | 174961,00    | 174259,45      | 158312,00     | 157610,45     | 174259,448 ± 190,05 | 15838,37   |

| ESTE DOCUMENTO CONTIENE INFORMACIÓN PROPIETARIA Y NO PUEDE SER DUPLICADO, PROCESADO O CEDIDO A TERCEROS PARA UN USO DISTINTO AL DE ESTE |  |                                |                            |           |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|--|--------------------------------|----------------------------|-----------|--|--|--|--|
| PROYECTO Y EL OBJETO PARA EL QUE HA SIDO PREVISTO SIN LA AUTORIZACIÓN ESCRITA DEL COORDINADOR ELÉCTRICO NACIONAL                        |  |                                |                            |           |  |  |  |  |
| Informe                                                                                                                                 |  | PROPIETARIO                    | CONSULTORA                 | Página Nº |  |  |  |  |
| Versión Final Coordinad                                                                                                                 |  | Coordinador Eléctrica Nacional | Hamek Ingenieros Asociados | 21        |  |  |  |  |



## **APÉNDICES**

| ESTE DOCUMENTO CONTIENE INFORMACIÓN PROPIETARIA Y NO PUEDE SER DUPLICADO, PROCESADO O CEDIDO A TERCEROS PARA UN USO DISTINTO AL DE ESTE PROYECTO Y EL OBJETO PARA EL QUE HA SIDO PREVISTO SIN LA AUTORIZACIÓN ESCRITA DEL COORDINADOR ELÉCTRICO NACIONAL |                                              |    |                                |                            |           |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----|--------------------------------|----------------------------|-----------|--|--|--|
| Informe                                                                                                                                                                                                                                                  |                                              | me | PROPIETARIO                    | CONSULTORA                 | Página Nº |  |  |  |
| Versió                                                                                                                                                                                                                                                   | Versión Final Coordinador Eléctrica Nacional |    | Coordinador Eléctrica Nacional | Hamek Ingenieros Asociados | 22        |  |  |  |