Empresa: TRANSANTARTIC ENERGIA

País: Chile

Proyecto: Parque Eólico San Pedro I

Descripción: Informe de Potencia Máxima

Código de Proyecto: EE-2021-039

Código de Informe: EE-EN-2021-1789

Revisión: A

01 de octubre de 2021

Este documento EE-EN-2021-1789-RA fue preparado para TRANSANTARTIC ENERGIA por Estudios Eléctricos. Para consultas técnicas respecto del contenido del presente comunicarse con:

Ing. Federico García
Departamento de Ensayos
federico.garcia@estudios-electricos.com

Ing. Andrés Capalbo Coordinador Dpto. Ensayos andres.capalbo@estudios-electricos.com

Ing. Pablo Rifrani Gerente de Ensayos pablo.rifrani@estudios-electricos.com

www.estudios-electricos.com

Este documento contiene 39 páginas y ha sido guardado por última vez el 01/10/2021 por Federico García, sus versiones y firmantes digitales se indican a continuación:

Rev	Fecha	Comentarios	Realizó	Revisó	Aprobó
Α	01/10/2021	Para presentar.	FG	AC	PR

Todas las firmas digitales pueden ser validadas y autentificadas a través de la web de Estudios Eléctricos; http://www.estudios-electricos.com/certificados.

Índice

1	INT	FRODUCCIÓN	Z
		Definiciones y Nomenclatura	
_			
2	ASI	PECTOS NORMATIVOS	
3	DE	SCRIPCIÓN DEL PARQUE	8
	3.1	Unifilar de planta	10
	3.2	Aerogeneradores	14
	3	3.2.1 Datos del Generador	14
	3	3.2.2 Datos del Convertidor	15
	3	3.2.3 Datos del transformador de aerogenerador	17
	3	3.2.4 Datos de los transformadores de potencia	18
	3	3.2.5 Datos del transformador de Servicios Auxiliares	19
	3	3.2.6 Curva de potencia	20
	3	3.2.7 Curva de generación de potencia reactiva	2:
	3	3.2.8 Estados del aerogenerador	24
4	RE	GULACION DE POTENCIA ACTIVA Y REACTIVA DEL PE SAN PEDRO I	28
5	DE	TERMINACIÓN DE POTENCIA MÁXIMA	31
	5.1	Mediciones	32
	5.2	Ensayos	32
	5.3	Cálculos y resultados	34
	5	5.3.1 Potencia Bruta	34
	5	5.3.2 Potencia de los Servicios Auxiliares	35
	5	5.3.3 Potencia neta	35
	5	5.3.4 Potencia de pérdida en la central	35
	5	5.3.5 Extrapolación para condición de planta completa	36
	5.4	Resultados	37
6	CO	MCLLISIONES	20

1 INTRODUCCIÓN

El presente Informe Técnico documenta el procedimiento y los resultados obtenidos al determinar la Potencia Máxima del Parque Eólico San Pedro I de acuerdo con lo establecido en el "Anexo Técnico: Pruebas de Potencia Máxima en Unidades Generadores", cuyos aspectos más relevantes se destacan en la Sección 2.

El Parque Eólico San Pedro I se ubica en la cordillera de San Pedro de Dalcahue, ubicada en la región de Chiloé, y tiene una potencia instalada de 36 MW. El parque se vincula al SEN mediante un transformador de 110/30 kV a la S/E San Pedro 220 kV (Tensión Provisional 110 kV), la que a su vez se conecta a la S/E Chiloé 220 kV.

1.1 Definiciones y Nomenclatura

La Figura 1-1, muestra un sistema equivalente de conexión de un parque fotovoltaico, el cual nos permite identificar y definir los siguientes elementos:

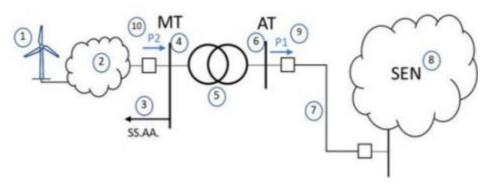


Figura 1-1 – Sistema equivalente parque eólico.

- 1) **Generador equivalente:** Corresponde a la suma de los aportes distribuidos de potencia activa alterna de cada aerogenerador del parque eólico.
- 2) Pérdidas en sistema colector del parque (Pcolector): Corresponde a las pérdidas del sistema colector del parque eólico, principalmente en cables de baja y media tensión, y en los transformadores colectores que elevan de baja a media tensión.
- 3) Servicios Auxiliares de la central (SS.AA.).
- 4) Barra de media tensión (MT): Corresponde a la tensión en el lado de baja tensión del transformador de poder del parque eólico.
- 5) **Transformador de Poder:** Equipo elevador presente en la subestación de salida del parque eólico.
- 6) **Barra de alta tensión (AT):** Corresponde a la tensión en el lado de alta tensión del transformador de poder del parque eólico.
- 7) **Línea dedicada de la central:** Línea de alta tensión que vincula el parque eólico con el sistema eléctrico.
- 8) Sistema Eléctrico Nacional (SEN).

A partir de las definiciones anteriores, el presente informe considera la siguiente nomenclatura:

- ✓ P1: Potencia activa inyectada en la barra de alta tensión (AT) del parque [MW].
- ✓ P2: Potencia activa inyectada en la barra de media tensión (MT) del parque [MW].
- ✓ Pperd: Pérdidas de potencia activa en línea de transmisión [MW] (ver número "7" en Figura 1-1).
- ✓ Ptrafo: Pérdidas activas en el transformador de poder del parque [kW].
- ✓ SS.AA.: Servicios Auxiliares del parque [kW].
- ✓ Pcolector: Pérdidas en el sistema colector del parque [kW] (ver número "2" en Figura 1-1).

2 ASPECTOS NORMATIVOS

El "Anexo Técnico: Pruebas de Potencia Máxima en Unidades Generadoras" establece las metodologías y procesos para efectuar los ensayos de verificación del máximo valor de potencia activa bruta que puede sostener un sistema de generación.

El **Artículo 39** es el que corresponde considerar para el caso en cuestión debido a que se trata de una central cuya fuente es renovable no convencional sin capacidad de regulación (no hay almacenamiento de energía). Éste establece que el valor de Potencia Máxima deberá ser obtenido a partir de registros de operación y mediciones de los recursos naturales que inciden en la operación de estas tecnologías, especificándose las metodologías, cálculos y todos los antecedentes y aspectos técnicos usados para la obtención de dicho valor.

3 DESCRIPCIÓN DEL PARQUE

El parque San Pedro está compuesto por 18 aerogeneradores Gamesa modelo G90 con una potencia unitaria de 2000 kW, generando un total de 36 MW brutos.

El parque agrupa dos circuitos MT de 30 kV subterráneos hasta el centro de control del parque, en donde se coloca el punto de facturación en el lado de alta tensión.

Los dos circuitos de MT se distribuyen de la siguiente forma:

- Circuito 1-San Pedro: 18 MW, 9 aerogeneradores.
- Circuito 2-San Pedro: 18 MW, 9 aerogeneradores.

Estos circuitos se conectan en la barra de 30 [kV] de S/E San Pedro, evacuando finalmente su energía hacia el SIC a través de un transformador elevador de 30/110 [kV] de 40 MVA. A continuación, se muestra el diagrama unifilar del parque:

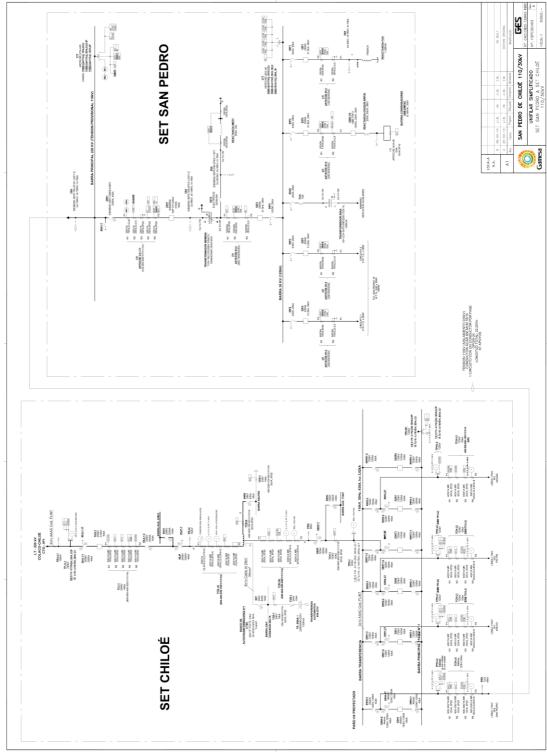


Figura 3-1 – Unifilar simplificado S/E Pedro a S/E Chiloé

3.1 Unifilar de planta

La red interna de media tensión (MT) del parque se encuentra compuesta de 2 circuitos en donde acometen 9 aerogeneradores por cada uno de ellos, los aerogeneradores cuentan con un Generador Eléctrico de potencia nominal de 2070 kW, un transformador de potencia de relación 33/0.66 kV y un convertidor de potencia que se divide en tres etapas: Convertidor conectado a la red, Bus CC y Convertidor conectado al generador.

El detalle de la distribución de los centros de transformación, su acometida en la barra de MT y la salida del parque a la S/E correspondiente se muestra en la Figura 3-2, Figura 3-3 y Figura 3-4.

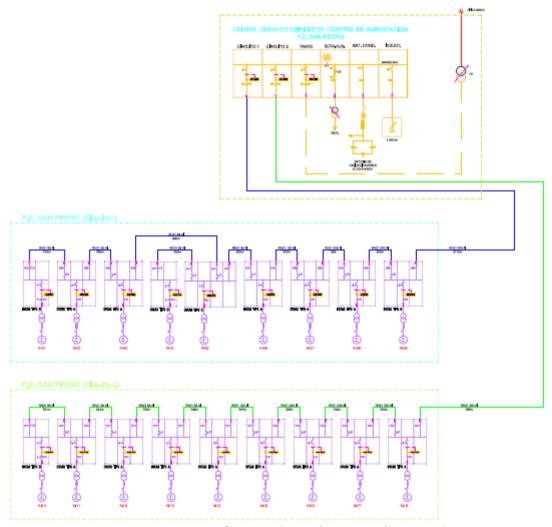


Figura 3-2 – Diagrama unifilar de media tensión - Parque eólico San Pedro I

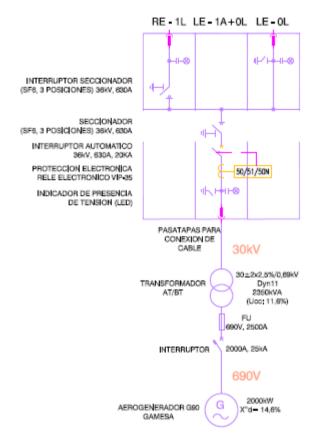


Figura 3-3 - Celdas (MESA) DVCAS 36 kV, 630 A, 20kA.

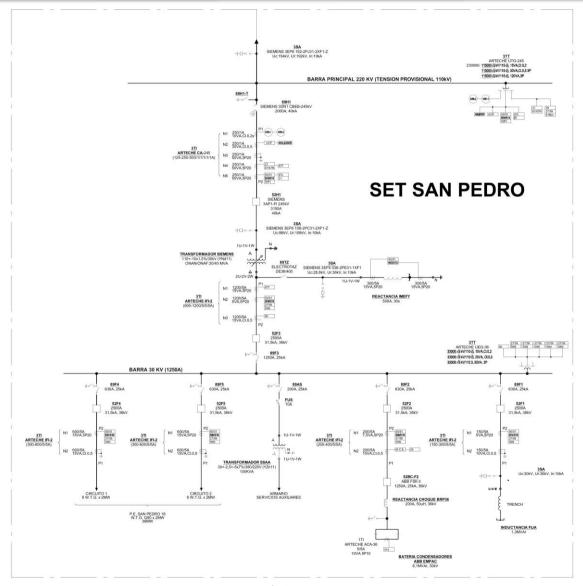


Figura 3-4 - S/E de salida del parque.

3.2 Aerogeneradores

El Parque eólico San Pedro I cuenta con 18 aerogeneradores Gamesa G90 2MW, los aerogeneradores Gamesa G 8X son del tipo de rotor tripala a barlovento. Estos aerogeneradores están regulados por un sistema de cambio de paso independiente en cada pala y con un sistema activo de orientación de góndola. El sistema de control permite operar el aerogenerador a velocidad variable maximizando en todo momento la potencia producida y minimizando las cargas y el ruido generado. La potencia producida por el generador es totalmente tratada por el convertidor Full Converter (FC).

3.2.1 Datos del Generador

El Generador es del tipo asincrónico doblemente alimentado con 4 polos, rotor bobinado y anillos rozantes. Esta refrigerado por un cambiador de calor aire – aire y el sistema de control permite trabajar con velocidad mediante el control de la frecuencia de las intensidades del rotor.

Generador Eléctrico	
Tipo Generador	Generador asíncrono doblemente alimentado.
Conexión Estator	Triangulo.
Conexión Rotor	Estrella.
Numero de Polos	4
Tamaño Constructivo	500
Sentido de giro	Sentido Horario visto desde el lado de acoplamiento.
Sondas Pt100	6 en estator, 1 en rodamientos LA y LOA y 1 en cuerpo de anillos
Temperatura ambiente	-40ºC a +50ºC (Versión BT), -20ºC a +50ºC (Standard y AT)
Frecuencia Nominal	50/60 Hz
Velocidad Nominal (50/60 Hz)	1680 / 2016 rpm
Rango de Velocidad	1000 – 1950 rpm / 1200 – 2340 rpm
Tensión Nominal	690 V
Tensión Rotor Bloqueado	1800 – 1850 V
Potencia Nominal	2070 kW

Factor de Potencia	0.95 cap — 1 — 0.95 cap
Grado de Protección	IP54 Maquina – IP21 Cuerpo de Anillos
Proteccion de la Corrosión	C3H de acuerdo con ISO 12944
Sistema de Refrigeración	IC666 refrigeración por aire con intercambiador aire/aire
Aislamiento Estator / Rotor	FóH/FóH
Peso	≤ 7.1 toneladas
Pre-Instalación acelerómetros para Sistema Mantenimiento Predictivo	Incluido
Posibilidad instalación engrasador automático	Si

Tabla 3.1 Datos del Generador

3.2.2 Datos del Convertidor

Se encarga del control de potencia y de gestionar la conexión y desconexión del generador de la red. Este convertidor se divide en tres etapas:

- **Convertidor conectado a la red:** este convertidor CA/CC convierte la tensión trifásica de la red (tensión y frecuencia fijas, de acuerdo con la red) en tensión CC.
- **Bus CC:** son los condensadores que filtran la tensión CC para reducir las fluctuaciones de tensión.
- **Convertidor conectado al generador:** este inversor CC/CA convierte la tensión del bus CC en corriente alterna (tensión y frecuencia variables, según la velocidad de giro).

Cada convertidor se gestiona mediante la unidad de control del convertidor (CCU), que también proporciona las comunicaciones externas, principalmente con el PLC que gestiona todo el aerogenerador.

Convertidor de Frecuencia (I)	
Tecnología	AC/DC/AC basado en IGBTs
Temperatura de funcionamiento	-25 50ºC
Refrigeracion	Aire o Agua/Glicol
Temperatura Maxima ambiente	50ºC
Temperatura Maxima liquido refigerante	60ºC
Grado de proteccion convertidor	IP54
Frecuencia Nominal	48 a 63 Hz
Tensión Nominal	690 V
Inversor conectado a la red	
Potencia Nominal	230 kW
Potencia Máxima del Rectificador	450 kW
Corriente Nominal del Rectificador	192 A
Corriente Máxima del Rectificador (calculado para 690 V-10%)	420 A
Tensión Nominal del BUS DC	1070 – 1135 Vdc
Inversor conectado al generador	
Frecuencia de salida	020 Hz
Tensión de Salida	0730 Vac
Corriente Maxima de Salida	800 A
Velocidad mínima de operación (50/60 Hz)	950/1140
Velocidad máxima de operación (50/60 Hz)	1950/2340 rpm

Tabla 3.2 Datos del Convertidor de Frecuencia

3.2.3 Datos del transformador de aerogenerador

El transformador es del tipo trifásico, seco encapsulado, con diferentes opciones de tensión de salida entre 6,6 kV y 35kV, diferentes rangos de potencia aparente y está especialmente diseñado para aplicaciones eólicas. Está situado en la parte trasera de la góndola en un compartimento separado por una pared metálica que lo aísla térmica y eléctricamente del resto de componentes de la góndola.

TRANSFORMADOR DE POTENCIA (I)					
Tipo Transformador	Transformador Trifásico, Seco Encapsulado				
Condición de Servicio	Interior				
Temperatura máxima	55°C				
Clase Ambiental	E2				
Clase Climática	C2				
Comportamiento frente al fuego	F1				
Altitud sobre nivel del mar	1000 m				
Clase de Aislamiento/Térmico	H				
Tensión Devanados de Baja Tensión	3 x 690 V				
Conexión Devanados de Baia Tensión	Estrella, neutro conectado directamente a tierra				
Tensión Devanados de Media Tensión	3x20 kV / 3x30 kV / 3x34.5 kV / 3x35kV				
Tensión más elevada MT	SALO RE TOAGO RE TOAGORE				
20 kV - 50Hz	24 kV				
30 kV - 50Hz	36 kV				
34.5 kV - 60Hz	36 kV				
35 kV - 50Hz	40.5 kV (de acuerdo a GB 1094.11)				
Conexión Devanados de Media Tensión	Triángulo				
Tomas intermedias Media Tensión	+/-2,5% +/-5%				
Grupo de Conexión	Dyn11				
Frecuencia de Red	50 ó 60 Hz				
Nivel de aislamiento Asignado MT	30 0 00 112				
20 kV Frecuencia Industrial	50 kV (50Hz 1 min)				
20 kV Impulso tipo rayo	125 kV (1.2/50 µs, polaridad -)				
30 kV Frecuencia Industrial	70 kV (50Hz 1 min)				
30 kV Impulso tipo rayo	170 kV (3012 1 mm)				
34.5 kV Frecuencia Industrial	70 kV (60Hz 1 min)				
34.5 kV Impulso tipo rayo	170 kV (1.2/50 µs, polaridad +)				
35 kV Frecuencia Industrial					
35 kV Impulso tipo rayo	70 kV (60Hz 1 min) 170 kV (1.2/50 µs, polaridad -)				
Nivel de aislamiento Asignado BT	170 kV (1.2/30 μs, polandad -)				
	2350 kVA				
Potencia Asignada Impedancia Cortocircuito 690V 2350 kVA	10.5% (valor aproximado)				
Corriente Cortocircuito Secundario 690 V					
Pérdidas	25 kA (valor aproximado)				
	(valance mássim con sin talanchaire)				
En vacío	(valores máximos sin tolerancias)				
20 kV - 50Hz 30 kV - 50Hz	≤ 3.7 kW ≤ 3.9 kW				
34.5 kV - 50Hz					
35 kV - 50Hz	≤ 4.2 kW ≤ 4.2 kW				
<u>En carga a 120°C</u> 20 kV - 50Hz	(valores máximos sin tolerancias) ≤ 24.2 kW				
30 kV - 50Hz	≤ 24.2 kW ≤ 25.8 kW				
34.5 kV - 60Hz	≤ 25.8 kW ≤ 24 kW				
35 kV - 50Hz	≤ 24 kW				
Nivel de descargas parciales	≤ 24 KW ≤ 10 pC				
Sondas Pt-100	·				
	2 por fase				
Dimensiones máximas (L*W*H)	2080*890*2170 mm (valores aproximados)				
Peso	< 5700 kg				

Figura 3-5 – Datos del transformador del aerogenerador

3.2.4 Datos de los transformadores de potencia

El parque se vincula al SEN mediante un transformador de 110-220/30 kV a la S/E San Pedro 220 kV (Tensión Provisional 110 kV), la que a su vez se conecta a la S/E Chiloé 220 kV.

La placa característica de los mismos se muestra en la Figura 3-6.

Type	ree phase
3 Transformer Vector group and Type of use - YNd11 - Generation 4 Power (type of cooling) MVA 30 (ONAN) / 40 (5 Maximum system voltage kV 6 Rated Primary Voltage kV 220-110 7 Rated Secondary Voltage kV 30 8 Rated frequency Hz 50 9 Tap changer - On load (motorion 10 Location - HV side 11 Taps (at full ONAF power delivery) - ±10 x 1,5% Rated insulation levels (nominal - 1.2/50μs - 50Hz/1minute) - 12 HV side - Phases kV 245-950-39 13 HV side - Neutral kV 72,5-325-14 14 Taps (at full onal - Neutral kV 72,5-325-14 15 HV side - Neutral kV 72,5-325-14 16 HV side - Neutral kV 72,5-325-14 17 Rated insulation Rated insul	
4 Power (type of cooling) MVA 30 (ONAN) / 40 (5 Maximum system voltage kV 6 Rated Primary Voltage kV 30 8 Rated Secondary Voltage kV 30 9 Tap changer - On load (motorion of the side o	
5 Maximum system voltage kV 6 Rated Primary Voltage kV 220-110 7 Rated Secondary Voltage kV 30 8 Rated frequency Hz 50 9 Tap changer - On load (motorion on the state of the	Step Up
6 Rated Primary Voltage kV 220-110 7 Rated Secondary Voltage kV 30 8 Rated frequency Hz 50 9 Tap changer - On load (motorion of the side	ONAF)
Rated Secondary Voltage	
8 Rated frequency Hz 50 9 Tap changer - On load (motor) 10 Location - HV side 11 Taps (at full ONAF power delivery) - ±10 x 1,5% Rated insulation levels (nominal - 1.2/50µs - 50Hz/1minute) - - 12 HV side - Phases kV 245-950-39 13 HV side - Neutral kV 72,5-325-14	
9 Tap changer - On load (motorion 10 Location - HV side 11 Taps (at full ONAF power delivery) - ±10 x 1,5% Rated insulation levels (nominal - 1.2/50μs - 50Hz/1minute) - 12 HV side - Phases kV 245-950-39: 13 HV side - Neutral kV 72,5-325-14	
10 Location - HV side 11 Taps (at full ONAF power delivery) - ±10 x 1,5% Rated insulation levels (nominal - 1.2/50μs - 50Hz/1minute) 12 HV side - Phases kV 245-950-39 13 HV side - Neutral kV 72,5-325-14	
11 Taps (at full ONAF power delivery) - ±10 x 1,5% Rated insulation levels (nominal - 1.2/50μs - 50Hz/1minute) 12 HV side - Phases kV 245-950-39 13 HV side - Neutral kV 72,5-325-14	ised)
Rated insulation levels (nominal - 1.2/50µs - 50Hz/1minute)	
12 HV side - Phases kV 245-950-39 13 HV side - Neutral kV 72,5-325-14	
13 HV side – Neutral kV 72,5-325-14	
	5
14 MV side kV 36-170-70	0
15 Maximum working temperature rise oil / copper °C 60 / 65	
16 Short circuit voltage at 75°C - ONAF based power % 12%-13%	
17 No Load Losses at 110% rated voltage KW < 25	
18 Load Losses at full load and main Tap KW < 200	
19 Cooling System V 220 V ac	
20 Control V 125 V dc	
Other Characteristics and Accessories	
21 Taps signalisation Dry type conta	icts
Protective devices Buchholz / Oil L	evel /
Temperature / Pro	essure
23 Transformer footing type Skids	
24 Insulators type - Porcelain or ep	оху
25 Creepage distance mm/kV 25	
26 Temperature range °C -25°C to +40	
27 Altitude m Up to 1000m sea	°C
28 Standards - IEC and relevant CHIL	

Figura 3-6 – Datos del transformador de potencia

3.2.5 Datos del transformador de Servicios Auxiliares

TRANSFORMADOR A SECO AISLADO EN RESINA					
Marca	Tesar Arezzo				
Modelo	TRV 100				
Año	2013				
Tipo	Interior				
Potencia	100 kVA				
Numero de Fases	3				
Frecuencia	50 Hz				
Refrigeración	AN				
Alta Tensión					
Voltaje	20 ± 2x2.5% kV				
Corriente	1.92 A				
Grupo Vectorial	Yzn11				
Clase de aislación	F 100 K				
Baja Tensión					
Voltaje	400 V				
Corriente	144.3 A				
N.A	36 – 70 – 170 / 1 1-3 kV				
Clase de aislación	F 100K				
%e	6				
Clases	E2- C2- F1				
Peso	1550 kg				

Tabla 3.3 - Datos de placa del transformador de servicios auxiliares.

Los consumos de servicios auxiliares pueden ser alimentados de la barra de media tensión de San Pedro I o San Pedro II. Los mismos se conectan a través de un alimentador único que puede ser desde el alimentador 89AS1 (Barra 1 30 kV – San Pedro I) o desde el alimentador 89AS2 (Barra 2 30 kV – San Pedro II). En operación normal están conectados a través del alimentador 89AS1 de PE San Pedro I.

3.2.6 Curva de potencia

La siguiente tabla muestra la potencia eléctrica [kW] como función de la velocidad del viento [m/s] horizontal referido a la altura del buje, ponderada en diez minutos, para diferentes densidades de aire [kg/m3]. La curva de potencia no incluye las pérdidas del transformador ni de los cables de alta tensión. La curva de potencia corresponde a la versión estándar del aerogenerador. La Densidad del Aire para el emplazamiento es de 1,15 kg/m3.

P [k W]	Densidad del aire [kg/ $m{m}^2$]								
Ws [m/s]	1.225	1.06	1.09	1.12	1.15	1.18	1.21	1.24	1.27
3	21	17	18	19	19	20	21	22	23
4	85	71	73	76	78	81	84	86	89
5	197	167	173	178	184	189	195	200	206
6	364	311	320	330	340	349	359	369	378
7	595	511	526	541	557	572	587	603	618
8	901	774	797	820	843	866	889	912	936
9	1275	1097	1130	1162	1195	1227	1259	1291	1323
10	1649	1443	1483	1521	1561	1597	1632	1666	1700
11	2899	1750	1787	1819	1849	1873	1891	1907	1922
12	1971	1932	1944	1952	1960	1966	1969	1973	1977
13	1991	1976	1980	1983	1986	1988	1990	1992	1993
14	1998	1992	1994	1995	1996	1997	1998	1998	1999
15	2000	1998	1999	1999	1999	1999	2000	2000	2000
16	2000	2000	2000	2000	2000	2000	2000	2000	2000
17	2000	2000	2000	2000	2000	2000	2000	2000	2000
18->21	2000	2000	2000	2000	2000	2000	2000	2000	2000
22	1906	1906	1906	1906	1906	1906	1906	1906	1906
23	1681	1681	1681	1681	1681	1681	1681	1681	1681
24	1455	1455	1455	1455	1455	1455	1455	1455	1455
25	1230	1230	1230	1230	1230	1230	1230	1230	1230

Tabla 3.4 - Potencia en kW del AEG 2 MW calculada en función de la velocidad del viento en m/s

Tres son los valores que definen el funcionamiento del aerogenerador:

- Velocidad de acople (Vin): Valor típico alrededor de 3 m/s.
- Velocidad nominal (Vr): Valor típico alrededor de 13 m/s.
- Velocidad de corte (Vout): Valor típico alrededor de los 21 25 m/s.

Figura 3-7 – Curva de potencia del aerogenerador de 2.0 MW según velocidad del viento

De acuerdo con la información suministrada por el fabricante el consumo de potencia del aerogenerador es de 6.2 kW.

3.2.7 Curva de generación de potencia reactiva

Los límites de la producción de potencia reactiva son \pm 655 kVAr, considerando siempre como referencia el alado de BT del transformador principal. Esos límites son aplicables a todo el rango de generación de potencia activa (desde 100 kW hasta 2000 kW) siempre que el aerogenerador esté en funcionamiento, con temperatura ambiente dentro del rango de funcionamiento y tensión en el rango de \pm 5%.

SG 2.0MW

2.0MW

-655kVAr

655kVAr

100kW

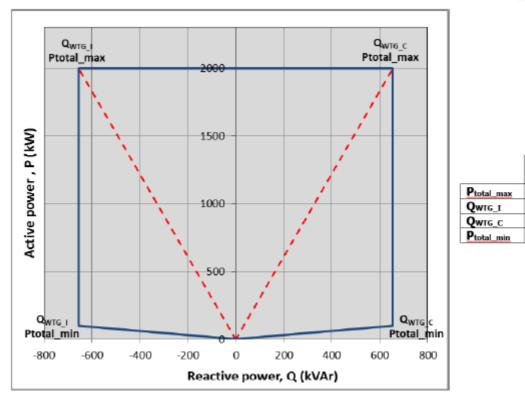


Figura 3-8 - Potencia Reactiva Vs. Potencia Activa para un aerogenerador 2.0 MW

Cuando la opción QPO está habilitada (Q con P = 0 kW), se puede producir una potencia reactiva sin tener generación de potencia activa. Esto se producirá durante las condiciones de poco viento cuando el aerogenerador está preparado para producir sin alarmas activas. La siguiente figura describe la máxima generación de Q en función de la tensión.

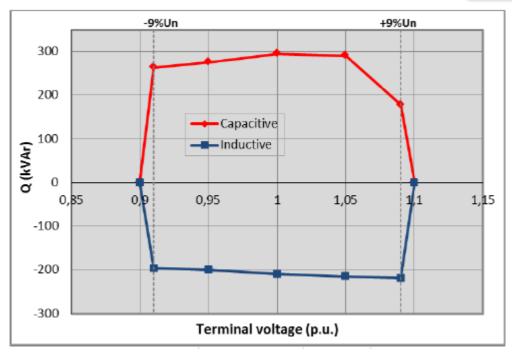


Figura 3-9 - Voltaje en p.u. Vs. Potencia Reactiva

3.2.8 Estados del aerogenerador

Los estados de funcionamiento que tienen un efecto de carga en la turbina se describen en esta sección. El esquema de estado de funcionamiento principal del aerogenerador se muestra a continuación:

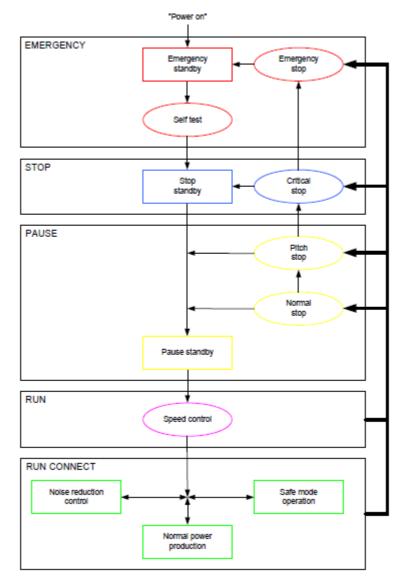


Figura 3-10 - Esquema de estado de funcionamiento principal

EMERGENCIA

El estado principal de emergencia se puede activar desde STOP, PAUSA, MARCHA y MARCHA ACOPLADA y debería activarse muy de vez en cuando. Este estado de la turbina está conectado con la cadena de seguridad eléctrica, de modo que cuando se activa una parada de emergencia el controlador abrirá la cadena de seguridad y activará así el sistema de seguridad de la turbina.

- Parada de emergencia: Este procedimiento de parada se utiliza en caso de fallos de red de más de 5 segundos, error de generador/convertidor u otros errores graves del sistema, en los que se dude de la fiabilidad del sistema. El generador se desconecta inmediatamente, lo que provoca que la potencia y el par caigan instantáneamente a cero. El paso se desplaza hacia la puesta en bandera por medio del circuito de paso de emergencia.
- <u>Parada de emergencia (pulsador)</u>: Similar a la parada de emergencia. Este procedimiento de parada se utiliza si esta activado el pulsador de emergencia rojo de la turbina. El freno de disco se activará cuando las r/min del rotor estén casi a 0 r/min.

STOP

El estado principal STOP se puede activar desde PAUSA, MARCHA y MARCHA ACOPLADA. En este estado principal existe un procedimiento de cierre, la parada critica. La parada critica es más grave que la parada de paso o la parada normal, porque en este estado se utiliza el circuito de paso de emergencia.

Parada crítica: El procedimiento de parada crítica se podría haber detectado que el sistema de paso es defectuoso, lo cual significa que se utiliza el circuito de paso de emergencia. El sistema del generador/convertidor está operativo, lo que permite el control completo del par y la potencia durante el procedimiento de parada. Por tanto, este procedimiento de parada crítica está relacionado sobre todo con fallos de paso en la turbina. El paso se desplaza hacia la puesta en bandera por medio del circuito de paso de emergencia. El generador permanecerá conectado hasta que se alcance aproximadamente 0 kW, seguido de una desconexión. Esto proporcionara un efecto de frenado durante el procedimiento de parada.

PAUSA

El estado principal PAUSA se puede activar desde STOP, MARCHA y MARCHA ACOPLADA. En este estado principal existen dos procedimientos de cierre, la parada de paso y la parada normal. La parada de paso es muy similar a la parada critica, excepto que se utiliza la válvula proporcional en lugar

del sistema de paso de emergencia. En el estado de parada normal tanto el sistema de paso como el sistema del generador/convertidor están operativos. El estado de parada normal es el procedimiento de parada más utilizado. Ofrecerá el funcionamiento más suave de la turbina durante un procedimiento de parada y por tanto, presentara el efecto de carga más bajo.

De acuerdo con la información provista por el fabricante, los aerogeneradores pasan al estado de pausa si la potencia requerida es inferior a los 100 kW.

- Parada de paso: La parada de paso se utiliza en caso de que la turbina deba detenerse más rápido que en el estado de parada normal. El paso se desplaza hacia la puesta en bandera por medio de la válvula proporcional. El generado permanecerá conectado hasta que se alcance aproximadamente 0 kW, seguido de una desconexión. Esto proporcionara un efecto de frenado durante el procedimiento de parada.
- Parada normal: En el procedimiento de parada normal tanto el paso como el generado/convertido están operativos, lo que permite a la turbina efectuar una parada suave y controlada de la turbina. Este procedimiento de parada se utiliza en caso de temperatura alta continua de un subsistema, parada manual, error de orientación u otros fallos no críticos. El paso se desplaza hacia una posición de parada final de paso de 86 grados. El par y la potencia descienden durante el procedimiento de parada hasta que el generador se desconecta cuando la potencia es cercana 0 kW.

MARCHA

La puesta en marcha o funcionamiento se produce cuando hay viento suficiente para generar potencia positiva y todos los subsistemas están operativos. En este estado el controlador de velocidad esta activado, lo que significa que se puede mantener de manera dinámica una consigna de velocidad del generador. Esto prepara la turbina para MARCHA ACOPLADA, lo que significa una producción de potencia normal.

Control de velocidad: La puesta en marcha (MARCHA a AMRCHA ACOPLADA) se efectúa desplazando el paso hacia el ajuste fino. Esto aumentara las r/min en la función de la velocidad del viento. Cuando el generador alcanza las r/min mínimos (90 r/min, 20% de 448 r/min nominales, u 87 r/min, 20% de 433 r/min nominales, dependiendo del modelo de aerogenerador) se conecta, y el par y la potencia aumentan hasta la consigna demandada por el controlador de referencia de potencia con 100 kW/s. En este punto el controlador de velocidad de paso y el controlador de referencia de potencia estarán activados y la turbina cambiara su estado a MARCHA ACOPLADA.

MARCHA ACOPLADA

En todos los estados de marcha acoplada están activas todas las características de control.

- Producción de potencia normal: Durante la producción de potencia normal la turbina funciona de acuerdo con la curva de paso optima y la curva de velocidad de potencia de la turbina. La amortiguación de torre activa funcionará dependiendo del sensor de aceleración de torre y el paso individual también estará activo.
- <u>Control de reducción de ruido</u>: En el control de reducción de ruido la turbina funciona con una velocidad periférica reducida.
- <u>Modo de seguridad</u>: La funcionalidad del modo de seguridad reduce la potencia y las r/min del generador en situaciones críticas de carga, con lo que se minimizan las cargas de una manera sencilla pero eficaz.

4 REGULACION DE POTENCIA ACTIVA Y REACTIVA DEL PE SAN PEDRO I

La gestión del control de potencia activa en el Parque Eólico se realiza a través de la interfaz Gamesa WindNet PRO, a través de la herramienta Gamesa Power Manager, en la cual se puede realizar el ingreso de consignas de generación para el control del Parque Eólico. El control de potencia activa distribuye la consigna de generación entre los aerogeneradores, en función del recurso de viento con el que cuenta cada aerogenerador (ver - Figura 3-7 – Curva de potencia del aerogenerador de 2.0 MW según velocidad del viento).

Las funciones de los reguladores son las siguientes:

- Regulador de Activa: limita la potencia producida por un parque en función de una restricción local (la máxima potencia transmitible por la subestación, por ejemplo), o de una consigna impuesta por los operadores de la red o por la propia explotación del parque que se recibe de forma externa (regulación dinámica).
- Regulador de Reactiva: permite controlar la producción de potencia reactiva para conseguir las consignas impuestas, que pueden venir como valores de potencia reactiva (KVAR) o como factor de potencia (cos Phi). Es posible trabajar con consignas planificadas por calendario, de forma que el valor a obtener depende del día y hora o recibir consignas externas para obtener una regulación dinámica. Además, el Regulador de Reactiva también acepta un límite de potencia aparente de forma que se reduzca la producción de potencia reactiva en caso de que se supere dicho límite. Este límite puede ser estático o dinámico (recibido de forma externa).
- Regulador de Frecuencia: esta aplicación es un modo especial de funcionamiento del Regulador de Activa, que incluye la posibilidad de limitar la producción de potencia activa en función de la frecuencia actual de la red, para contribuir a estabilizarla. Al tratarse de la misma aplicación el nombre de la instancia del regulador será el mismo que el del Regulador de Activa asociado. El Regulador de Frecuencia puede trabajar con varias curvas de limitación por frecuencia, y cambiar entre ellas de forma dinámica.

Parque Eólico San Pedro I Informe de Potencia Máxima

• Regulador de Tensión: esta aplicación se instala para contribuir a la estabilización de la tensión de red. Opera actuando sobre la producción de potencia reactiva en función de la tensión. Es, por lo tanto, incompatible con el Regulador de Reactiva.

Para cada regulador es posible tener varias fuentes de entrada de consignas. En este campo se nos muestra por cuál de estas posibles entradas llegó la consigna que se está aplicando actualmente.

Para el Regulador de Activa tenemos:

- Limitación local por restricciones de la instalación (por ejemplo, límite de evacuación de la subestación).
 - Consigna por OPC.
 - Consigna desde WindOne (Despachos Delegados o Centro de control).
 - Consigna local, aplicada en WindNet por un operador.
- Frecuencia. Sólo puede aplicar en el caso de que exista un Regulador de Frecuencia instalado y en el caso de que la consigna resultante de la regulación de frecuencia sea más restrictiva que la consigna de potencia activa actual.

Para el Regulador de Reactiva tenemos:

- Consigna local fija en Regulador de Reactiva (no se puede modificar desde WindNet).
- Consigna dependiente del calendario (no se puede modificar desde WindNet).
- Consigna desde WindOne.
- Consigna por OPC.
- Consigna local, aplicada en WindNet por un operador.

Parque Eólico San Pedro I Informe de Potencia Máxima

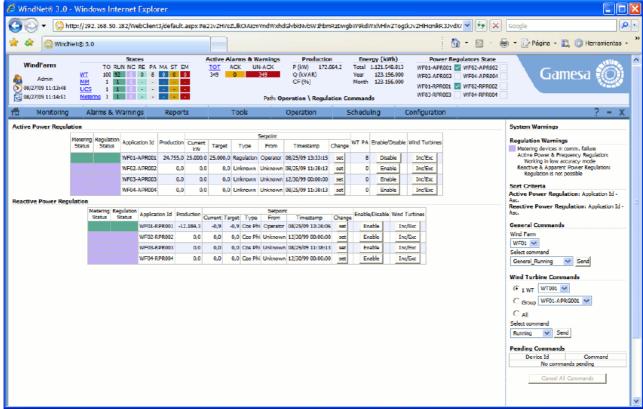


Figura 4-1- Sistema Gamesa WindNet SCADA- Pantalla Comandos de regulación

5 DETERMINACIÓN DE POTENCIA MÁXIMA

La Potencia Máxima corresponde al máximo valor de potencia activa bruta que puede sostener un sistema de generación y deberá ser obtenido a partir de registros de operación y mediciones de los recursos naturales que inciden en la operación de estas tecnologías.

Para el caso del Parque Eólico San Pedro I se cuenta con mediciones de la Potencia Bruta y velocidad de viento proveniente de los aerogeneradores y de la Potencia Neta registrada en el POI.

Para la prueba de Potencia Máxima realizada, se reportan los valores de potencia según se desglosan en la siguiente tabla de resultados, las definiciones se encuentran a continuación.

Parque Eólico	Potencia Bruta	SS.AA.	Pérdidas en la	Potencia Neta
	[MW]	[kW]	central [kW]	[MW]
San Pedro I	(1)	(2)	(3)	(4)

Tabla 5.1 – Tabla de resumen a presentar

- (1). **Potencia Bruta del Parque:** Corresponde a la suma de los aportes distribuidos de potencia activa alterna de cada aerogenerador del Parque Eólico San Pedro I.
- (2). **Potencia de SS.AA.:** Corresponde a la suma de los consumos propios promedio de cada aerogenerador estimados en kW x Cantidad de aerogeneradores (considerando todos los equipos en servicio), más los SS.AA. de la central.
- (3). **Pérdidas en la central:** Corresponde a la suma de las pérdidas en el transformador de poder de la central (kW) y de las pérdidas en el sistema colector de media tensión.
- (4). Potencia Neta del parque: Potencia inyectada en 110 kV en paño H1 de la S/E San Pedro.

5.1 Mediciones

Las mediciones de potencia bruta de todos los aerogeneradores se realizaron mediante el equipo SCADA de la planta, este posee una tasa de muestreo de 10 minutos. Debido a las limitaciones del sistema de adquisición de planta solo fue posible registrar con mejor resolución la operación de un solo aerogenerador (A11) utilizando para el mismo una tasa de muestreo de 1 segundo.

Para la medición de potencia neta se utiliza el medidor de facturación de planta ION 8600 (SN MT-1306A177-01). Los registros se obtuvieron con una tasa de muestreo de 1 minuto.

5.2 Ensayos

El día 17 de agosto de 2021 se realizó el ensayo de Potencia Máxima en condiciones alto y constante recurso eólico para la época. Durante las pruebas los aerogeneradores A01, A02, A04, A05 y A17 no estuvieron operativos, por lo tanto, la prueba fue realizada con 13 aerogeneradores operativos del total de 18 que tiene el Parque Eólico San Pedro I.

Se presentan a continuación los registros correspondientes. En la Figura 5-1 se muestra la potencia sumada de todos los aerogeneradores, además de la velocidad del viento promedio en los aerogeneradores, marcando el período considerado en el ensayo de Potencia Máxima. Cabe mencionar que la medición de potencia de los inversores se realiza en bornes del equipo y que, para obtener el valor de potencia bruta medida del ensayo, se deben considerar los consumos propios de cada equipo estimados en 6.2 kW.

En la Figura 5-2 se muestra el registro de potencia neta medida en el paño H1 de la S/E San Pedro y el número de aerogeneradores en servicio, donde se observa que 13 equipos se encuentran en servicio.

Finalmente, en la Figura 5-3 se muestran las principales variables y el valor promedio de las mismas dentro del período de pruebas considerado.

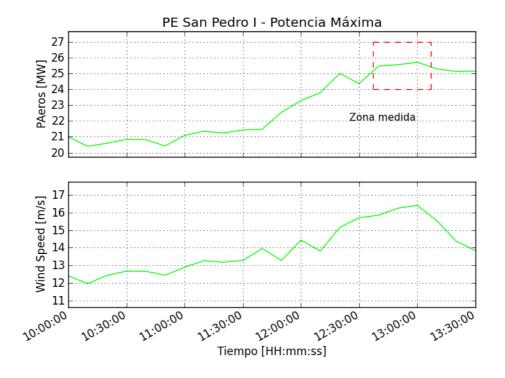


Figura 5-1 – Potencia total de los aerogeneradores y velocidad del viento

Figura 5-2 – Potencia neta y equipo en servicio

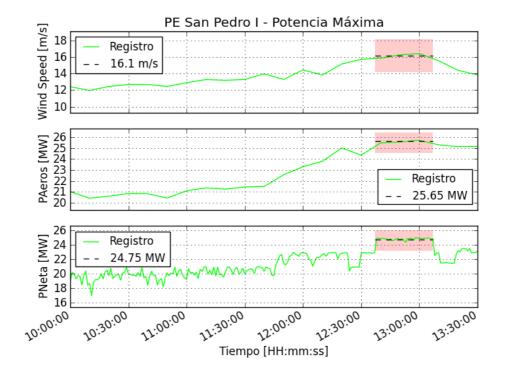


Figura 5-3 – Principales variables (Periodo considerado para la prueba de PMax)

5.3 Cálculos y resultados

En la presente sección se realizará el cálculo de los valores de potencia según se desglosan en la Tabla 5.1. Para el desarrollo de los cálculos se han considerado los valores medios de cada variable durante el período de medición, los cuáles se presentan en la Figura 5-3.

5.3.1 Potencia Bruta

Para la determinar la **Potencia Bruta Medida** ($P_{bruta,med}$) durante el ensayo se consideran el valor registrado de potencia de los aerogeneradores (P_{Aeros}) y se les suma la potencia de los consumos propios de cada:

$$P_{bruta,med} = P_{Aeros} + N^{\circ}Aeros \ x \ Consumos \ propios$$

$$P_{bruta.med} = 25.65 \, MW + 13 \, x \, 6.2 \, kW = 25.7306 \, MW$$

5.3.2 Potencia de los Servicios Auxiliares

La Potencia de Servicios Auxiliares corresponde a la suma de los consumos propios de cada aerogenerador estimados en kW x Cantidad de aerogeneradores (considerando los aerogeneradores en servicio), más los Servicios Auxiliares de la central.

Según se observa en 3.2.6, el consumo interno de cada aerogenerador se estima en 6.2 kW. Adicionalmente, durante los ensayos en planta se ha realizado la lectura del consumo de servicios auxiliares ($P_{tr.SSAA}$), cuyo valor registrado fue de 13.9 kW.

En base a estos datos se procede a calcular la **Potencia de Servicios Auxiliares**.

$$P_{SSAA} = P_{tr,SSAA} + N^{\circ} Aeros \ x \ Consumos \ propios$$

 $P_{SSAA} = 13.9 \ kW + 13 \ x \ 6.2 \ kW = 94.5 \ kW$

5.3.3 Potencia neta

La Potencia Neta corresponde a la potencia inyectada en 110 kV en paño H1 de la S/E San Pedro. Para la determinación de la **Potencia Neta Medida** ($P_{neta,med}$) durante el ensayo se considera el valor promedio del registro de potencia obtenido dentro del periodo de ensayo:

$$P_{neta,med} = 24.75 MW$$

5.3.4 Potencia de pérdida en la central

La Potencia de Pérdidas en la central corresponde a la suma de las pérdidas en el transformador de poder de la central, en los transformadores de bloque y de las pérdidas en el sistema colector de media tensión.

En base a las mediciones realizadas durante el ensayo de Potencia Máxima, el cálculo de la Potencia de Pérdidas en la central se realiza considerando la diferencia entre la potencia medida en los aerogeneradores (P_{AEROS} , ver Figura 5-3) y la Potencia Neta Medida ($P_{neta,med}$, ver Figura 5-3). Además, se debe considerar el valor de potencia del transformador de servicios auxiliares, cuya lectura durante las pruebas fue de 13.9 kW.

La expresión para el cálculo de Potencia de Pérdidas en la central medida ($P_{perd,central,med}$) se presenta a continuación.

$$P_{perd,central,med} = P_{AEROS} - P_{tr,SSAA} - P_{neta,med}$$

$$P_{perd,central,med} = 25.65 \, MW - 13.9 \, kW - 24.75 \, MW = 0.8861 \, MW$$

5.3.5 Extrapolación para condición de planta completa

Para estimar los valores correspondientes a operación con planta completa, se escalan los valores obtenidos por la proporción N° Total $Aeros/N^{\circ}$ Aeros en servicios (18/13) obteniéndose:

Potencia Bruta

La **Potencia Bruta** ($P_{bruta,central}$) esperada para la totalidad de la central con 18 aerogeneradores en funcionamiento es:

$$P_{bruta,central} = P_{bruta,med} x (N^{\circ} Total Aeros/N^{\circ} Aeros en servicios)$$

$$P_{bruta,central} = 25.7306 MW x (18/13) = 35.627 MW$$

Potencia neta

La **Potencia Neta** ($P_{neta,central}$) esperada para la totalidad de la central con 18 aerogeneradores en funcionamiento es:

$$P_{neta,central} = P_{neta,med}x(N^{\circ} Total Aeros/N^{\circ} Aeros en servicios)$$

 $P_{neta,central} = 24.75 \ MW \times (18/13) = 34.269 \ MW$

Potencia de los Servicios Auxiliares

La Potencia de Servicios Auxiliares corresponde a la suma de los consumos propios de cada aerogenerador estimados en kW x Cantidad de aerogeneradores (considerando todos los aerogeneradores en servicio), más los Servicios Auxiliares de la central.

En base a estos datos se procede a calcular la **Potencia de Servicios Auxiliares Corregida**.

$$P_{SSAA,central} = P_{tr,SSAA} + N^{\circ} Total Aeros x Consumos propios$$

 $P_{SSAA,central} = 13.9 kW + 18 x 6.2 kW = 125.5 kW$

Potencia de pérdida en la central

La Potencia de Pérdidas en la central corresponde a la suma de las pérdidas en el transformador de poder de la central, en los transformadores de bloque y de las pérdidas en el sistema colector de media tensión.

En base a los valores estimados a nivel planta, el cálculo de la Potencia de Pérdidas en la central se realiza considerando la diferencia entre la Potencia Bruta ($P_{bruta,central}$) y la Potencia Neta ($P_{neta,central}$) y la Potencia de Servicios Auxiliares ($P_{SSAA,central}$).

La expresión para el cálculo de Potencia de Pérdidas en la central Corregida ($P_{perd,central,corr}$) se presenta a continuación.

$$P_{perd,central} = P_{bruta,central} - P_{SSAA,central} - P_{neta,central}$$

$$P_{perd,central} = 35.627 \ MW - 125.5 \ kW - 34.269 \ MW = 1.2325 \ MW$$

5.4 Resultados

En base a los cálculos presentados en las secciones precedentes y los registros operacionales, se muestra a continuación la tabla resumen de resultados.

Parque Eólico	Potencia Bruta [MW]	SS.AA. [kW]	Pérdidas en la central [kW]	Potencia Neta [MW]
San Pedro I (ensayos 13 Aeros)	25.73	94.5	886.1	24.75
San Pedro I (planta completa)	35.63	125.5	1232.5	34.27

Tabla 5.2 – Resultados Potencia Máxima – Parque Eólico San Pedro I

6 CONCLUSIONES

Se determinaron mediante ensayos los valores de potencia máxima bruta y neta para el Parque Eólico San Pedro I.

Parque Eólico	Potencia Bruta [MW]	SS.AA. [kW]	Pérdidas en la central [kW]	Potencia Neta [MW]
San Pedro I (ensayos 13 Aeros)	25.73	94.5	886.1	24.75
San Pedro I (planta completa)	35.63	125.5	1232.5	34.27

Tabla 6.1 – Resultados Potencia Máxima – Parque Eólico San Pedro I

Se demuestra que <u>la Potencia Máxima bruta</u> que podría entregar el parque es **35.63 MW**, resultando en una <u>Potencia Máxima Neta</u> calculada de **34.27 MW** en el POI.

Esta página ha sido intencionalmente dejada en blanco.