

# Estudio de Requerimientos Mínimos de Seguridad y Calidad para el SEN

Informe Final Actividad 3 - Inversores Formadores de Red

### Preparado para:

**Coordinador Eléctrico Nacional** 

Teatinos 280, Piso 11, Santiago de Chile

### Elaborado por:

DIgSILENT GmbH, Diciembre de 2021





#### DIgSILENT GmbH

Heinrich-Hertz-Straße 9 D-72810 Gomaringen Tel.: +49 7072 9168 - 0 Fax: +49 7072 9168- 88 http://www.digsilent.de

#### Contacto

Flavio Fernández T: +49 (0)7072 9188-55 f.fernandez@digsilent.de

# Historia de Revisión del Documento

| Versión | Estado     | Archivo                                                              | Entregado  | Preparado   | Revisado     |
|---------|------------|----------------------------------------------------------------------|------------|-------------|--------------|
| 01      | Preliminar | P2053_CEN-Estudio-RMSC-<br>Actividad-3_Informe-<br>Preliminar_v1.pdf | 20/10/2021 | F. De Marco | F. Fernández |
| 02      | Final      | P2053_CEN-Estudio-RMSC-<br>Actividad-3_Informe-<br>Preliminar_v2.pdf | 15/11/2021 | F. De Marco | F. Fernández |
| 03      | Final      | P2053_CEN-Estudio-RMSC-<br>Actividad-3_Informe-<br>Preliminar_v3.pdf | 06/12/2021 | F. De Marco | F. Fernández |

# Contenido

| 1 | IN  | TROE | DUCCIÓN                                         | 6  |
|---|-----|------|-------------------------------------------------|----|
| 2 | TEC | CNOL | LOGÍA DE LOS INVERSORES DE POTENCIA             | 7  |
|   | 2.1 | Τιρο | OS DE INVERSOR                                  | 7  |
|   | 2.2 | CON  | ITROL DEL INVERSOR FORMADOR DE RED              | 8  |
| 3 | PL/ | AN D | DE EXPANSIÓN CON TECNOLOGÍA GFM                 | 11 |
|   | 3.1 | Desf | PLIEGUE DE INVERSORES GFM A PARTIR DEL AÑO 2025 | 11 |
|   | 3.2 | ESCE | ENARIOS RESULTANTES                             | 12 |
|   | 3.3 | For  | TALEZA DE RED                                   | 14 |
|   | 3.4 | Dese | Empeño Dinámico                                 | 15 |
|   | 3.4 | .1   | Demanda alta de día (30T1-GF)                   | 15 |
|   | 3.4 | .2   | Demanda baja de noche (30T2-GF)                 | 18 |
| 4 | SEI | NSIB | BILIDAD                                         | 21 |
|   | 4.1 | ESCE | ENARIOS RESULTANTES                             | 22 |
|   | 4.2 | Dese | Empeño Dinámico                                 | 24 |
|   | 4.2 | .1   | Demanda alta de día en 2025 (25T1-GF)           | 24 |
|   | 4.2 | .2   | Demanda baja de noche en 2025 (30T1-GF)         | 29 |
|   | 4.2 | .3   | Demanda alta de día en 2030 (30T1-GF)           | 33 |
|   | 4.2 | .4   | Demanda baja de noche en 2030 (30T2-GF)         | 37 |
| 5 | со  | NCLU | USIONES                                         | 40 |

# **Abreviaturas**

| BD     | Base de datos                                                               |
|--------|-----------------------------------------------------------------------------|
| CEN    | Coordinador Eléctrico Nacional                                              |
| CS     | Condensador sincrónico                                                      |
| CSP    | Concentración solar de potencia                                             |
| ECFyDR | Estudio de control de frecuencia y determinación de reservas                |
| ERV    | Energía renovable variable                                                  |
| HVDC   | Corriente continua en alta tensión (del inglés high voltaje direct current) |
| MSV    | Máquina sincrónica virtual                                                  |
| NTSyCS | Norma Técnica de Seguridad y Calidad de Servicio                            |
| SEN    | Sistema Eléctrico Nacional                                                  |
| SE     | Subestación                                                                 |
|        |                                                                             |

# 1 Introducción

La Actividad 2 del proyecto investigó el uso de compensación sincrónica como medida de estabilización para los escenarios de mínima inercia en el horizonte 2025 y 2030. Mediante la compensación sincrónica se consigue aumentar el nivel de cortocircuito fundamentalmente en la región del Norte Grande (la más afectada por el retiro de centrales convencionales de generación) de manera de asegurar un comportamiento estable del sistema aún para la alta penetración de generación renovable conectada al sistema mediante inversores de potencia del tipo seguidores de red.

Esta Actividad 3 investiga una alternativa de desarrollo centrada en el uso de inversores formadores de red (GFM) para lograr una operación estable de dichos escenarios en condiciones de mínima inercia y baja potencia de cortocircuito, como resulta del plan de expansión.

Los inversores formadores de red funcionan como una fuente de tensión y pueden imponer la tensión en amplitud, fase y frecuencia, por lo que no necesitan de la red para operar, pudiendo operar incluso con potencia de cortocircuito nula. En la actualidad, esta tecnología tiene aplicación en pequeñas redes aisladas o en los parques eólicos offshore conectados al sistema mediante un enlace en corriente continua (HVDC, como por ejemplo la generación eólica en el Mar del Norte, Alemania).

Si bien se prevé un fuerte impulso en el desarrollo de esta tecnología como alternativa a los inversores seguidores de red utilizados en la actualidad para la generación eólica y fotovoltaica de gran escala, es poco probable que esta tecnología está disponible en el mercado antes del 2025. Por este motivo, se investiga principalmente el uso de esta tecnología como alternativa de desarrollo para el horizonte 2030. No obstante, se realiza una sensibilidad en relación a su uso como compensador estático a partir del 2025, como alternativa a la instalación de condensadores sincrónicos en la Actividad 2.

# 2 Tecnología de los inversores de potencia

## 2.1 Tipos de inversor

En la actualidad, el control de los inversores de electrónica de potencia para la operación en paralelo con la red es del tipo "**seguidor de red**". Esto significa que el inversor no puede operar si la red no impone la tensión (amplitud y fase), lo que se traduce en una potencia de cortocircuito mínima necesaria en su punto de conexión a la red. El sistema de control utiliza un control interno rápido de corriente en un marco de referencia d-q rotante y sincronizado con la tensión de la red mediante un dispositivo de detección de fase (phase-locked loop o PLL por sus siglas en inglés). Con ello, la red ve al inversor como una fuente de corriente, más allá de que el inversor propiamente dicho sea de tipo VSC (o fuente de tensión). La generación ERN (eólica y solar fotovoltaica) actualmente conectada al CEN utiliza esta tecnología.

Una forma alternativa de control representa el uso del inversor VSC como "oscilador". En este caso, el control ajusta la amplitud, fase y frecuencia de la tensión (control V/f) imponiendo la tensión en la red. A consecuencia de ello, esta forma de control no está diseñada para la operación en paralelo con otros inversores del mismo tipo. Esta tecnología encuentra entonces difusión en pequeños sistemas aislados y en aplicaciones offshore (por ejemplo, plantas eólicas en el Mar del Norte), en cuyo caso la conexión al resto del sistema se realiza mediante un enlace en corriente continua (y por lo tanto no actúan en sincronismo con la red). El inversor del lado offshore opera en modo oscilador imponiendo la tensión en amplitud, fase y frecuencia al sistema offshore. Los inversores de la generación offshore son del tipo "seguidores de red" y se sincronizan con esta tensión impuesta por el oscilador.

Los inversores referidos como "formador de red" utilizan en cambio una combinación de ambas estrategias de control. Por un lado, el inversor impone una tensión a la red y con ello, no necesita de la red (potencia de cortocircuito) para operar. A diferencia de un "seguidor de red", el control de un inversor "formador de red" no necesita de la medición de la fase de la tensión de la red para sincronizarse con el sistema y pueden operar de manera estable aún en sistemas con un 100% de la generación conectada a través de electrónica de potencia. Con ello, la red ve al inversor como una fuente de tensión detrás de una impedancia. Por el otro lado, la estrategia de control de un inversor "formador de red" permite una integración flexible con otros inversores del mismo tipo en paralelo, facilitando así su integración al sistema a gran escala. Las características distintivas de un inversor formador de red pueden resumirse como sigue:

- Fuente de tensión con capacidad de crear la tensión del sistema
- Contribución a la inercia del sistema
- Contribución a la potencia de cortocircuito (en general limitada a la corriente nominal del inversor, en algunos casos con una capacidad moderada de sobrecarga del 10 al 20%)

- Capacidad de contrarrestar desbalances de tensión (por ejemplo, control de la tensión de secuencia negativa)
- Capacidad de contrarrestar distorsiones de tensión (sumidero de armónicos)

## 2.2 Control del inversor formador de red

Se han desarrollado múltiples estrategias de control del inversor formador de red, entre las que se destacan:

- Máquina sincrónica virtual
- Control de *droop* en el lazo interno de control
- Control directo de tensión
- Control reforzado de corriente

Para la integración a gran escala aplica la máquina sincrónica virtual, por lo que en adelante este estudio se enfoca en esta estrategia de control. El control del inversor emula en este caso el comportamiento físico de una máquina sincrónica y con ello, su capacidad inherente de "formar la red". Según su implementación, el control reproduce también cierto comportamiento indeseado de la máquina sincrónica, como ser el riesgo de pérdida de estabilidad transitoria (pérdida de sincronismo) y su característica oscilatoria, con riesgo de inestabilidad dinámica en caso de poco amortiguamiento eléctrico.

La implementación del control puede ser orientada a su uso como máquina sincrónica virtual (MSV) propiamente dicha, o bien parcial para su uso como compensador sincrónico virtual (CSV).

El modelo compuesto de la MSV se indica en la Figura 1. Este consiste de los bloques de medición de corriente y tensión, el bloque de cálculo de la potencia eléctrica, el control formador de red propiamente dicho, el control de impedancia virtual, el control de tensión, bloque de cálculo de las consignas de tensión real e imaginaria, y el bloque del generador estático (o inversor). En el caso del CSV, el modelo compuesto se reduce a la Figura 2.

En ambos casos, el bloque de control implementa la ecuación de movimiento mecánico de la máquina sincrónica (ecuación de swing), que en valor en por unidad y en dominio de Laplace resulta:

$$T_a s \omega = p_{set} - p_{mea} - D_p(\omega_r - \omega_{set})$$

Donde  $T_a$  es la constante de tiempo mecánica (tiempo de aceleración de la máquina),  $p_{set}$  es la consigna de potencia,  $p_{mea}$  es la potencia activa que entrega la máquina,  $D_p$  el coeficiente de amortiguamiento mecánico,  $\omega_r$  la velocidad angular del rotor y  $\omega_{set}$  la velocidad de referencia. La relación entre las variables eléctricas y mecánicas de la máquina sincrónica están tomadas de [1]. La función de transferencia resultante se muestra en Figura 3.



Figura 1: Modelo compuesto de la máquina sincrónica virtual



Figura 2: Modelo compuesto del compensador sincrónico virtual



Figura 3: Diagrama de bloques del controlador de la máquina sincrónica virtual y del condensador sincrónico virtual

# 3 Plan de expansión con tecnología GFM

## 3.1 Despliegue de inversores GFM a partir del año 2025

Se considera que los inversores GFM no estarán comercialmente disponibles antes del año 2025, por lo que se considera su despliegue como medida de mitigación para los escenarios de 2030 únicamente. Con ello, el escenario 2025 resulta idéntico al desarrollado en la Actividad 2, y usa compensación sincrónica para estabilizar el sistema según los condensadores listados en la Tabla 1.

| Puesta en<br>Servicio | Subestación | Tensión<br>(kV) | Capacidad<br>(Mvar) | Inercia<br>(GVAs) |
|-----------------------|-------------|-----------------|---------------------|-------------------|
| 2025                  | Lagunas     | 220             | 1x300               | 0,6               |
|                       | Kimal       | 220             | 2x300               | 1,2               |
|                       | Maitencillo | 220             | 1x300               | 0,6               |
|                       | Zaldivar    | 220             | 1x100               | 0,2               |
|                       | Domeyko     | 220             | 1x100               | 0,2               |
| Total (2025)          |             |                 | 1400                | 2,8               |

Tabla 1. Condensadores sincrónicos instalados en 2025 (Fuente: Actividad 2)

Para el horizonte 2030 se considera en cambio que la tecnología GFM estará disponible para su uso a gran escala. Con ello, se determina la cantidad de generadores estáticos mínima necesaria para reemplazar la instalación de los 1600Mvar de compensación sincrónica adicional identificada para el año 2030 en la Actividad 2.

El mecanismo de dimensionamiento es similar al utilizado en la Actividad 2.

En primer lugar, se buscar que la potencia de cortocircuito de la generación estática GFM asegure el nivel mínimo de fortaleza de red (RCCE≥1.5) en barras de 220kV y 500kV del sistema. Esto resulta necesario siendo que parte de la generación estática continuará siendo tipo seguidora de red (tecnología usada en la actualidad). Se deberá notar que el efecto de la generación GFM sobre el índice RCCE es doble: por un lado, aporta al nivel del cortocircuito (numerador de la ecuación) mientras que, por el otro lado, no aporta a la suma de la potencia inyectada en el denominador (en su calidad de "formador" de red o fuente de tensión a diferencia del "seguidor" de red o fuente de corriente). Otro aspecto a resaltar es que su ubicación está asociada a aquella de plantas futuras de ERV.

Seguidamente, se escoge una cantidad de inercia sintética de los generadores GFM equivalente a la de los condensadores sincrónicos previstos en la Actividad 2 (año 2030). De esta forma, se garantiza un nivel de inercia en el sistema que asegure un desempeño dinámico satisfactorio del sistema, particularmente en el Norte Grande. El total de inversores GFM propuestos es de 3135 MVA, de los cuales 2691 MVA se encuentran en el Norte Grande y 444 en el Norte Chico, como se lista en la Tabla 2. La constante de aceleración  $T_a$  de los modelos de máquina sincrónica virtual se ajustó en 1 s.

| Unidad                    | Subestación             | Zona         | Potencia<br>(MVA) | Inercia<br>Sintética<br>MVAs |
|---------------------------|-------------------------|--------------|-------------------|------------------------------|
| SOLAR_FVKimal220_GEN      | Kimal 220 kV            | Norte Grande | 939               | 469,5                        |
| PS_CEME_1_I_GEN           | Miraje 220 kV           | Norte Grande | 268               | 134,0                        |
| Pampa Tigre_GEN           | Farellon 220 kV         | Norte Grande | 107               | 53,5                         |
| SOLAR_FVMariaElena220_GEN | Maria Elena 220 kV      | Norte Grande | 191               | 95,5                         |
| Sol de lila_GEN           | Andes 220 kV            | Norte Grande | 163               | 81,5                         |
| FV Coya_GEN               | Coya 220 kV             | Norte Grande | 193               | 96,5                         |
| EOLICA_IParinas220_GEN    | Parinas 220 kV          | Norte Grande | 591               | 295,5                        |
| PE_LOA_GEN                | Encuentro 220 kV        | Norte Grande | 241               | 120,5                        |
| Sol de los Andes_GEN      | Diego de Almagro 110 kV | Atacama      | 96                | 48,0                         |
| PF_GUANACO_SOLAR_GEN      | Diego de Almagro 220 kV | Atacama      | 54                | 27,0                         |
| PF_SOL_DE_VARAS_GEN       | Carrera Pinto 220 kV    | Atacama      | 108               | 54,0                         |
| FV_INCA_DE_VARAS_GEN      | Carrera Pinto 220 kV    | Atacama      | 107               | 53,5                         |
| EOLICA_IIIIapa220_GEN     | Illapa 220 kV           | Atacama      | 80                | 40,0                         |
| Total                     |                         |              | 3135              | 1569                         |

Tabla 2. Generadores estáticos con inversores GFM considerados en 2030

## 3.2 Escenarios resultantes

Con esta selección de inversores GFM resultan los siguientes escenarios de alta (30T1-GF) y baja (30T2-GF) demanda para el horizonte 2030. Para una mejor comparación, estos escenarios se muestran junto a los escenarios equivalentes con condensadores sincrónicos de la Actividad 2. Notar que el despacho de generación es el mismo independientemente de la medida de mitigación. En los casos con inversores GFM, se contabiliza la inercia sintética de los modelos de máquina sincrónica virtual en el cálculo de la inercia total del sistema.

|               |                 | 30T1a | 30T1  | 30T1-CS | 30T1-GF |
|---------------|-----------------|-------|-------|---------|---------|
| Mitigación    | CS              | 0     | 0     | 3000    | 1400    |
| (MVA)         | GFM             | 0     | 0     | 0       | 3135    |
| Generación    | Total           | 12318 | 12332 | 12332   | 12332   |
| (MW)          | Térmica         | 1457  | 943   | 943     | 943     |
|               | Hidro           | 1864  | 2205  | 2205    | 2205    |
|               | PV              | 6510  | 6682  | 6682    | 6682    |
|               | Eólica          | 2487  | 2502  | 2502    | 2502    |
| Generaciór    | i Estática (%)  | 73    | 74    | 74      | 74      |
| Inercia       | Total           | 32,7  | 28,2  | 32,6    | 32,6    |
| (GVAs)        | Norte Grande    | 5,9   | 1,2   | 4,7     | 4,7     |
|               | Centro          | 3,4   | 3,4   | 3,4     | 3,4     |
| Transferencia | HVDC Norte->Sur | 2366  | 2366  | 2366    | 2366    |
| (MW)          | Norte->Centro   | 3556  | 3278  | 3278    | 3278    |
|               | Sur->Centro     | -248  | 21    | 21      | 21      |

Tabla 3. Generación, transferencias y medidas de mitigación en los escenarios de demanda alta de 2030

Tabla 4. Generación, transferencias y medidas de mitigación en los escenarios de demanda baja de 2030. Los escenarios 30T2-CS y 30T2-GF contemplan el despacho forzado de ANG1 (250MW) para reducir la transferencia Sur → Centro a 3840MW (ver justificación en la sección 4.3.1 del reporte de la Actividad 2)

|               |                 | 30T2a | 30T2  | 30T2-CS | 30T2-GF |
|---------------|-----------------|-------|-------|---------|---------|
| Mitigación    | CS              | 0     | 0     | 3000    | 1400    |
| (MVA)         | GFM             | 0     | 0     | 0       | 3135    |
| Generación    | Total           | 9202  | 9301  | 9239    | 9256    |
| (MW)          | Térmica         | 2106  | 1093  | 1343    | 1343    |
|               | Hidro           | 4653  | 5179  | 5179    | 5179    |
|               | PV              | 0     | 0     | 0       | 0       |
|               | Eólica          | 2442  | 3029  | 2717    | 2734    |
| Generaciór    | n Estática (%)  | 26,5  | 32,6  | 29,4    | 29,5    |
| Inercia       | Total           | 38,1  | 33,1  | 39,1    | 39,1    |
| (GVAs)        | Norte Grande    | 8,5   | 1,4   | 6,5     | 6,5     |
|               | Centro          | 3,4   | 4,6   | 4,6     | 4,6     |
| Transferencia | HVDC Norte->Sur | -1509 | -1509 | -1509   | -1509   |
| (MW)          | Norte->Centro   | -2035 | -2803 | -2627   | -2683   |
|               | Sur->Centro     | 3603  | 4053  | 3860    | 3920    |

## 3.3 Fortaleza de Red

La Tabla 5 resume las potencias de cortocircuito trifásico en las barras de AC de las estaciones conversoras HVDC sin medidas de mitigación, por un lado, y considerando el despliegue de inversores GFM según la Tabla 2 por el otro. Se consideró que durante el cortocircuito los inversores GFM se comportan como una máquina sincrónica e inyectan una potencia máxima igual a la nominal.

En los escenarios de demandas alta y baja de 2030 sin medidas de mitigación la fortaleza de red es inadmisible, siendo es muy inferior a 1 en Kimal 220 kV. Se verifica que en condiciones de red N-1 con uno de los circuitos de la línea Los Changos – Kimal 500 kV fuera de servicio, la fortaleza de la red en barras de la estación conversora HVDC del lado Kimal 220 kV es superior a 1,5 en ambos escenarios.

|           | Mitigación              |        | Kimal 220 kV |      |          |      | Lo Aguirre 500 kV |      |
|-----------|-------------------------|--------|--------------|------|----------|------|-------------------|------|
| Escenario | Compensación            | GFM    | Red N        |      | Red N-1* |      | Red N             |      |
|           | Sincrónica              | (GVA)  | (MVA)        | ESCR | (MVA)    | ESCR | (MVA)             | ESCR |
| 30T1      | Ninguna                 | 0      | 3631         | 0.26 | 3441     | 0.24 | 10462             | 1.06 |
| 30T1-GF2  | CS Domeyko 100 MVAr     |        |              |      |          | 1.55 |                   | 2.02 |
|           | CS Kimal 2 x 300 MVAr   | 3,1    |              |      |          |      | 10864             |      |
|           | CS Lagunas 300 MVAr     |        | 8291         | 1.57 | 8053     |      |                   |      |
|           | CS Maitencillo 300 MVAr |        |              |      |          |      |                   |      |
|           | CS Zaldivar 100 MVAr    |        |              |      |          |      |                   |      |
| 30T2      | Ninguna                 | 0      | 3474         | 1.99 | 3434     | 1.98 | 11782             | 3.29 |
|           | CS Domeyko 100 MVAr     |        |              |      |          |      |                   |      |
| 30T2-GF2  | CS Kimal 2 x 300 MVAr   |        |              |      |          |      |                   |      |
|           | CS Lagunas 300 MVAr     | 0,32** | 7384         | 3.95 | 7275     | 3.95 | 11234             | 4.14 |
|           | CS Maitencillo 300 MVAr |        |              |      |          |      |                   |      |

Tabla 5. Potencias de cortocircuito trifásico en las barras de AC de las estaciones conversoras HVDC sin y con condensadores sincrónicos y conversores GMF en los escenarios de mínima inercia de 2030.

(\*) Un circuito de Los Changos – Kimal 500 kV fuera de servicio

CS Zaldivar 100 MVAr

(\*\*) De los parques con conversores GFM solo Illapa en el Norte Chico y LOA en el Norte Grande se encuentran en servicio.

## 3.4 Desempeño dinámico

Para verificar el desempeño dinámico del sistema, se simularon las contingencias de Severidad 4 en líneas de 220 kV y 500 kV, junto con las desconexiones de equipos de compensación de potencia.

### 3.4.1 Demanda alta de día (30T1-GF)

Se verifica que el desempeño del sistema es satisfactorio en todos los casos. Las tensiones del sistema de transmisión resultan estables y se recuperan de forma satisfactoria para todas las contingencias simuladas.

La Figura 4 presenta la transferencia de potencia total por el enlace HVDC Kimal – Lo Aguirre para cada caso de simulación.

La Figura 5 presenta las tensiones en los nodos de 220 kV de las subestaciones Lagunas, Alto Jahuel y Puerto Montt para cada una de las contingencias.



Figura 4. Transferencia de potencia total por el enlace HVDC Kimal – Lo Aguirre para las contingencias simuladas en el escenario demanda baja de noche de 2030 de mínima inercia considerando el Plan de Expansión 2.

#### Lagunas 220 kV



Figura 5. Tensiones en nodos de 220 kV de las SSEE Lagunas (arriba), Alto Jahuel (centro) y Puerto Montt (abajo) para las contingencias simuladas en el escenario demanda alta de día de 2030 de mínima inercia considerando el Plan de Expansión 2.

#### 3.4.1.1 Falla de un polo del enlace HVDC

Se simuló en una falla bifásica a tierra en barras de 220 kV de la SE Kimal seguida de la desconexión de un polo del enlace HVDC Kimal – Lo Aguirre. La Figura 6 presenta las transferencias de potencia por el sistema de transmisión junto con la potencia transmitida por cada inversor del lado Lo Aguirre. Se observa que luego del despeje de la falla se desconectan dos inversores y la potencia total por el enlace HVDC Kimal – Lo Aguirre en estado estacionario se reduce a la mitad de su valor prefalla. La respuesta dinámica del sistema resulta satisfactoria.



Figura 6. Transferencias de potencia por el sistema de transmisión (arriba) y potencia transmitida por cada inversor del lado Lo Aguirre (abajo) ante la contingencia C25b (falla un polo enlace HVDC) en el escenario de demanda alta y mínima inercia de 2030 con el Plan de Expansión 2.

### 3.4.2 Demanda baja de noche (30T2-GF)

Se verifica que en todos los casos las tensiones del sistema de transmisión resultan estables y el desempeño del sistema es satisfactorio en todas las contingencias simuladas.

La Figura 7 presenta la transferencia de potencia total por el enlace HVDC Kimal – Lo Aguirre para cada caso de simulación. La Figura 8 presenta las tensiones en los nodos de 220 kV de las subestaciones Lagunas, Alto Jahuel y Puerto Montt para cada una de las contingencias.



Figura 7. Transferencia de potencia total por el enlace HVDC Kimal – Lo Aguirre para las contingencias simuladas en el escenario demanda baja de 2030 de mínima inercia considerando el Plan de Expansión 2.

Lagunas 220 kV



Figura 8. Tensiones en nodos de 220 kV de las SSEE Lagunas (arriba), Alto Jahuel (centro) y Puerto Montt (abajo) para las contingencias simuladas en el escenario demanda baja de 2030 de mínima inercia considerando el Plan de Expansión 2.

#### 3.4.2.1 Falla de un polo del enlace HVDC

Ídem que en escenario anterior, se simuló una falla bifásica a tierra en barras de 220 kV de la SE Kimal seguida de la desconexión de un polo del enlace HVDC Kimal – Lo Aguirre. La Figura 9 presenta las transferencias de potencia por el sistema de transmisión junto con la potencia transmitida por cada inversor del lado Lo Aguirre. Se observa que luego del despeje de la falla se desconectan dos inversores y la potencia total por el enlace HVDC Kimal – Lo Aguirre en estado estacionario se reduce a la mitad de su valor prefalla. La respuesta dinámica del sistema resulta satisfactoria.



Figura 9. Transferencias de potencia por el sistema de transmisión (arriba) y potencia transmitida por cada inversor del lado Lo Aguirre (abajo) ante la contingencia C25b (falla un polo enlace HVDC) en el escenario de demanda baja y mínima inercia de 2030.

# 4 Sensibilidad

Este análisis de sensibilidad considera que la tecnología GFM estará disponible comercialmente para su implementación a gran escala ya en el año 2025. Con ello se investiga el uso de condensadores estáticos (máquinas sincrónicas virtuales) como alternativa a la instalación de condensadores sincrónicos ya desde el año 2025.

Con ello, esta opción de mitigación prevé:

- Año 2025: se instalan los conversores estáticos con controladores formadores de red en reemplazo de los condensadores sincrónicos CCH, ANG e IEM, de acuerdo a la Tabla 6. Los 4800 MVA de GFM son adicionales a los generadores renovables existentes o futuros representados en la BD original. La relación entre el total de las potencias nominales e inercias de los condensadores sincrónicos y los conversores GFM adicionales es de 2,7.
- Año 2030: a los conversores GFM instalados en 2025 se agregan 600 MVAr de compensación sincrónica en Kimal 220 kV para aumentar la potencia de cortocircuito en dicha barra de modo de permitir el funcionamento del enlace HVDC Kimal – Lo Aguirre.

Notar que este análisis de sensibilidad partió de la hipótesis de que los inversores formadores de red tienen (inicialmente) una constante de inercia H equivalente a la constante de inercia promedio de los respectivos condensadores sincrónicos (4.4s). Dada la relación de potencia nominal entre los inversores formadores de red y los condensadores sincrónicos (2,7), el valor de inercia resultante es más alto: 21,1 GVAs de aporte adicional. Como se demuestra más adelante, este valor de inercia puede ser considerablemente reducido sin que cambie la performance dinámica del sistema.

| Compensador Sincrónico (CS) |                     |       |      | Inversor Formador de Red (GFM) |                 |                       |       |      |        |
|-----------------------------|---------------------|-------|------|--------------------------------|-----------------|-----------------------|-------|------|--------|
| Nambua                      | Nada                | Sn    | ŀ    | l (s)                          | Nambua          | Nada                  | Sn    | F    | l (s)  |
| Nombre                      | Νοαο                | (MVA) | (s)  | (GVAs)                         | Nombre          | NOQO                  | (MVA) | (s)  | (GVAs) |
| ANG1                        | Kapatur<br>220 KV   | 330   | 4,80 | 1,6                            | GFM Lagunas     | Lagunas<br>220 kV     | 1200  | 4,40 | 5,2    |
| ANG1                        | Kapatur<br>220 KV   | 330   | 4,80 | 1,6                            | GFM Encuentro   | Encuentro<br>220 kV   | 1200  | 4,40 | 5,3    |
| IEM                         | TEN<br>220 kV       | 442   | 4,55 | 2,0                            | GFM Los Changos | Los Changos<br>220 kV | 1200  | 4,40 | 5,3    |
| CCH1                        | Encuentro<br>220 kV | 330   | 3,86 | 1,3                            | GFM Parinas     | Parinas<br>220 kV     | 1200  | 4,40 | 5,3    |
| CCH2                        | Encuentro<br>220 kV | 330   | 3,86 | 1,3                            |                 |                       |       |      |        |
| Total                       |                     | 1762  |      | 7,7                            | Total 4800      |                       | 4800  |      | 21,1   |

Tabla 6. Reemplazo de condensadores sincrónicos por inversores formadores de red.

## 4.1 Escenarios resultantes

Con este plan de despliegue de inversores GFM resultan los siguientes escenarios para el horizonte 2025 y 2030.

|                     |                 | 25T1a | 25T1  | 25T1-CS1 | 25T1-GF |
|---------------------|-----------------|-------|-------|----------|---------|
| Mitigación          | CS              | 0     | 0     | 1762     | 0       |
| (MVA)               | GFM             | 0     | 0     | 0        | 4800    |
|                     | STATCOM         | 0     | 0     | 0        | 0       |
| Generación          | Total           | 11824 | 11806 | 11807    | 11806   |
| (MVV)               | Térmica         | 1241  | 476   | 505      | 505     |
|                     | Hidro           | 4005  | 4008  | 4008     | 4008    |
|                     | PV              | 5368  | 5709  | 5710     | 5709    |
|                     | Eólica          | 1209  | 1569  | 1583     | 1583    |
| Generación Estática | (%)             | 56    | 62    | 62       | 62      |
| Inercia             | Total           | 32.0  | 22.5  | 30.2     | 22.5    |
| (GVAs)              | Norte Grande    | 7.8   | 0.1   | 7.8      | 0.1     |
|                     | Centro          | 3.4   | 3.4   | 3.4      | 3.4     |
| Transferencia       | HVDC Norte->Sur | 0     | 0     | 0        | 0       |
| (MW)                | Norte->Centro   | 2044  | 1864  | 1864     | 1864    |
|                     | Sur->Centro     | 727   | 795   | 795      | 795     |

Tabla 7. Generación, transferencias de potencia y medidas de mitigación en los escenarios de demanda alta de 2025.

Tabla 8. Generación, transferencias y medidas de mitigación en los escenarios de demanda baja de 2025.

|                     |                 | 25T2a | 25T2  | 25T2-CS | 25T2-GFM |
|---------------------|-----------------|-------|-------|---------|----------|
| Mitigación          | CS              | 0     | 0     | 1762    | 0        |
| (MVA)               | GFM             | 0     | 0     | 0       | 4800     |
|                     | STATCOM         | 0     | 0     | 760     | 360      |
| Generación          | Total           | 7794  | 8016  | 8000    | 8000     |
| (MW)                | Térmica         | 1342  | 604   | 646     | 646      |
|                     | Hidro           | 4258  | 4305  | 4307    | 4307     |
|                     | PV              | 15    | 24    | 23      | 23       |
|                     | Eólica          | 2179  | 2936  | 3024    | 3023     |
| Generación Estática | (%)             | 27    | 37    | 37      | 37       |
| Inercia             | Total           | 36.6  | 27.2  | 34.9    | 27.2     |
| (GVAs)              | Norte Grande    | 8.8   | 1.1   | 8.8     | 1.1      |
|                     | Centro          | 3.4   | 3.4   | 3.4     | 3.4      |
| Transferencia       | HVDC Norte->Sur | 0     | 0     | 0       | 0        |
| (MW)                | Norte->Centro   | -1365 | -1672 | -1676   | -1676    |
|                     | Sur->Centro     | 2810  | 3142  | 3148    | 3148     |

|               |                 | 30T1a | 30T1  | 30T1-CS | 30T1-GF |
|---------------|-----------------|-------|-------|---------|---------|
| Mitigación    | CS              | 0     | 0     | 2362    | 600     |
| (MVA)         | GFM             | 0     | 0     | 0       | 4800    |
|               | STATCOM         | 0     | 0     | 0       | 0       |
| Generación    | Total           | 12318 | 12332 | 12332   | 12332   |
| (MW)          | Térmica         | 1457  | 943   | 943     | 943     |
|               | Hidro           | 1864  | 2205  | 2205    | 2205    |
|               | PV              | 6510  | 6682  | 6682    | 6682    |
|               | Eólica          | 2487  | 2502  | 2502    | 2502    |
| Generació     | n Estática (%)  | 73    | 74    | 74      | 74      |
| Inercia       | Total           | 32.7  | 28.2  | 36.7    | 29      |
| (GVAS)        | Norte Grande    | 5.9   | 1.2   | 9.7     | 1.9     |
|               | Centro          | 3.4   | 3.4   | 3.4     | 3.4     |
| Transferencia | HVDC Norte->Sur | 2366  | 2366  | 2366    | 2366    |
| (MW)          | Norte->Centro   | 1189  | 912   | 912     | 912     |
|               | Sur->Centro     | -248  | 21    | 21      | 21      |

Tabla 9. Generación, transferencias y medidas de mitigación en los escenarios de demanda alta de 2030.

Tabla 10. Generación, transferencias y medidas de mitigación en los escenarios de demanda baja de 2030.

|                     |                         | 30T2a | 30T2  | 30T2-CS | 30T2-GF |
|---------------------|-------------------------|-------|-------|---------|---------|
| Mitigación<br>(MVA) | CS                      | 0     | 0     | 2362    | 600     |
|                     | GFM                     | 0     | 0     | 0       | 4800    |
|                     | STATCOM                 | 0     | 0     | 0       | 0       |
| Generación          | Total                   | 9199  | 9294  | 9296    | 9295    |
| (MW)                | Térmica                 | 2106  | 1094  | 1094    | 1094    |
|                     | Hidro                   | 4631  | 5179  | 5179    | 5179    |
|                     | PV                      | 40    | 62    | 62      | 62      |
|                     | Eólica                  | 2422  | 2959  | 2961    | 2960    |
| Generación          | Generación Estática (%) |       | 31    | 31      | 31      |
| Inercia             | Total                   | 38.1  | 33.1  | 41.6    | 33.9    |
| (GVAs)              | Norte Grande            | 8.5   | 1.4   | 9.9     | 2.2     |
|                     | Centro                  | 3.4   | 4.6   | 4.6     | 4.6     |
| Transferencia       | HVDC Norte->Sur         | -1509 | -1509 | -1509   | -1509   |
| (14100)             | Norte->Centro           | -508  | -1273 | -1274   | -1273   |
|                     | Sur->Centro             | 3583  | 4030  | 4031    | 4031    |

(\*) Solo 320 MVA se encuentran en servicio, correspondientes a los parques eólicos Illapa y LOA.

## 4.2 Desempeño dinámico

Para verificar el desempeño dinámico del sistema, se simularon las contingencias de Severidad 4 en líneas de 220 kV y 500 kV, junto con las desconexiones de equipos de compensación de potencia reactiva.

### 4.2.1 Demanda alta de día en 2025 (25T1-GF)

Se verifica que en todos los casos las tensiones del sistema de transmisión resultan estables y el desempeño del sistema es satisfactorio en todas las contingencias simuladas. Por ejemplo, la Figura 10 presenta las tensiones en los nodos de 220 kV de las subestaciones Lagunas, Alto Jahuel y Puerto Montt para cada una de las contingencias. La máxima tensión luego del despeje de la falla es de 1,23 pu y se observa en Lagunas 220 kV ante la contingencia C17 (Crucero-María Elena 220 kV).

### 4.2.1.1 Contingencia C3 (línea Parinas – Cumbre 500 kV)

La Figura 11 muestra las potencias activa y reactiva, tensión y corriente terminal en los cuatro conversores GFM ante la Contingencia C3 (línea Parinas – Cumbre 500 kV).

La Figura 12, compara los ángulos de referencia de la tensión calculados por los modelos de MSV de los conversores GFM con los ángulos de las tensiones de las barras terminales de los respectivos conversores. En estado estacionario ambos valores coinciden, y luego del despeje de la falla los ángulos de las tensiones de las barras tienden a los valores de referencia de los modelos de MSV, siendo ambos relativamente cercanos a los 500 ms de simulación.

La Figura 12 también muestra que durante la falla las corrientes de los conversores GFM aumentan rápidamente, alcanzando valores superiores a 0,9 pu en los GFM Parinas y Los Changos, que son los más cercanos a la falla.



Figura 10. Tensiones en nodos de 220 kV de las SSEE Lagunas (arriba), Alto Jahuel (centro) y Puerto Montt (abajo) para las contingencias simuladas en el escenario demanda alta de día de 2025 de mínima inercia con conversores GFM.



Figura 11. Potencias activa y reactiva y tensiones terminales de los conversores GFM ante la contingencia C3 (Parinas – Cumbre 500 kV) simulada en el escenario demanda alta de día de 2025 de mínima inercia.



Figura 12. Ángulos de referencia y de las tensiones terminales (arriba), y corrientes (abajo) terminales de los conversores GFM ante la contingencia C3 (Parinas – Cumbre 500 kV) simulada en el escenario demanda alta de día de 2025 de mínima inercia.

#### 4.2.1.2 Variación de la constante de inercia de los conversores GFM

Se simuló la contingencia C3 (Parinas – Cumbre 500 kV) para los casos adicionales 25T1-GF2 y 25T1-GF3 en los que la constante de inercia  $T_a$  de los modelos de máquina virtual de los inversores GFM se redujo en 2,7 y 6 veces, respectivamente, en relación al valor original de 8,8 s. En el caso 25T1-GF2 (reducción de 2,7 veces) la inercia sintética provista por los inversores GFM coincide con la inercia mecánica total de los condensadores sincrónicos (7,7 GVAs).

La Figura 12 muestra que se obtienen evoluciones similares en la tensión en Parinas 220 kV y de la potencia inyectada por el GFM Parinas para los tres valores de constante de inercia ante la falla simulada, que no produce desvíos significativos de la frecuencia de la red.



Figura 13. Tensión en Parinas 220 kV (arriba) y potencia activa inyectada por el conversor GFM Parinas (abajo) ante la contingencia C3 (Parinas – Cumbre 500 kV) simulada en el escenario demanda alta de día de 2025 de mínima inercia para distintos valores de inercia sintética.

### 4.2.2 Demanda baja de noche en 2025 (30T1-GF)

Esta sección presenta el resultado del análisis de los escenarios de demanda baja de noche de 2025 de mínima inercia.

La Figura 14 muestra la tensión en Cumbre 220 kV ante la contingencia C10 (Ancoa – Alto Jahuel 500 kV) en simulada en los escenarios con tensiones nominales y tensiones elevadas, respectivamente.

En ambos escenarios (con tensiones nominales y con tensiones elevadas) las tensiones resultan inestables si sólo se consideran los conversores GFM (4,8 GVA) en servicio en el Norte Grande, sin STATCOMs ni condensadores sincrónicos adicionales en el Norte Chico y el Centro. El sistema se estabiliza al considerar 450 MVAr adicionales de condensadores sincrónicos o de un STATCOM conectados a las barras de 220 kV de la SE San Luis.



Figura 14. Tensión en Cumbre 220 kV, para los casos de la tabla anterior correspondientes a los escenarios con tensiones nominales de mínima demanda e inercia ante la contingencia C10 (Ancoa – Alto Jahuel 500 kV).

Se simularon todas las contingencias en el escenario de demanda baja de noche y mínima inercia con 4,8 MVA de conversores GFM en el Norte Grande y un STATCOM adicional de 360 MVAr en barras de 220 kV de la SE San Luis. Éste es el escenario en el que se elevaron las tensiones del sistema de transmisión en 500 kV.

Se verifica que en todos los casos las tensiones del sistema de transmisión resultan estables y el desempeño del sistema es satisfactorio en todas las contingencias simuladas. Por ejemplo, la Figura 15 presenta las tensiones en los nodos de 220 kV de las subestaciones Lagunas, Alto Jahuel y Puerto Montt para cada una de las contingencias.

La Figura 16 muestra las potencias activa y reactiva, tensión y corriente terminal en los cuatro conversores GFM para la Contingencia C3 (línea Parinas – Cumbre 500 kV).





Figura 15. Tensiones en nodos de 220 kV de las SSEE Lagunas (arriba), Alto Jahuel (centro) y Puerto Montt (abajo) para las contingencias simuladas en el escenario demanda baja de noche de 2025 de mínima inercia con conversores GFM y un STATCOM adicional en San Luis 220 kV.



Figura 16. Potencia activa y reactiva y tensiones terminales de los conversores GFM ante la contingencia C3 (Parinas – Cumbre 500 kV) simulada en el escenario demanda baja de noche de 2025 de mínima inercia.

### 4.2.3 Demanda alta de día en 2030 (30T1-GF)

Esta sección presenta el resultado del análisis de los escenarios de demanda alta de día de 2030 con mínima inercia.

#### 4.2.3.1 Relación de cortocircuito

La Tabla 11 resume las potencias de cortocircuito trifásico en las barras de AC de las estaciones conversoras HVDC sin medidas de mitigación, por un lado, y considerando inversores GFM y condensadores sincrónicos en el Norte Grande por el otro. Se consideró que durante el cortocircuito los inversores GFM se comportan como una máquina sincrónica e inyectan una potencia máxima igual a la nominal.

En los escenarios de demandas alta y baja de 2030 sin medidas de mitigación la potencia de cortocircuito en Kimal 220 kV es muy inferior a 2,5 veces la potencia nominal del enlace HVDC Kimal – Lo Aguirre.

Se verifica que en condiciones de red N-1 con uno de los circuitos de la línea Los Changos – Kimal 500 kV fuera de servicio, la relación de cortocircuito de la estación conversora HVDC del lado Kimal 220 kV es superior a 2,5 en ambos escenarios.

|           | Mitigación            |       | Scc (MVA)    |          |                   |  |
|-----------|-----------------------|-------|--------------|----------|-------------------|--|
| Escenario | Compensación          | GFM   | Kimal 220 kV |          | Lo Aguirre 500 kV |  |
|           | Sincrónica            | (GVA) | Red N        | Red N-1* | Red N             |  |
| 30T1      | Ninguna               | 0     | 2138         | 1917     | 9627              |  |
| 30T1-CS   | Cochrane 2 x 330 MVAr |       | 8016         | 7676     | 11576             |  |
|           | Angamos 2 x 330 MVAr  | •     |              |          |                   |  |
|           | IEM 442 MVAr          | U     |              |          |                   |  |
|           | CS Kimal 3 x 200 MVAr |       |              |          |                   |  |
| 30T1-GF   | CS Kimal 3 x 200 MVAr | 4,8   | 8209         | 7932     | 11597             |  |
| 30T2      | Ninguna               | 0     | 3474         | 3404     | 10509             |  |
| 30T2-CS   | Cochrane 2 x 330 MVAr |       | 8247         | 7933     | 13119             |  |
|           | Angamos 2 x 330 MVAr  | •     |              |          |                   |  |
|           | IEM 442 MVAr          | 0     |              |          |                   |  |
|           | CS Kimal 3 x 200 MVAr |       |              |          |                   |  |
| 30T2-GF   | CS Kimal 3 x 200 MVAr | 4,8   | 8314         | 8076     | 13121             |  |

Tabla 11. Potencias de cortocircuito trifásico en las barras de AC de las estaciones conversoras HVDC sin y con condensadores sincrónicos y conversores GMF en los escenarios de mínima inercia de 2030.

(\*) Un circuito de Los Changos – Kimal 500 kV fuera de servicio

#### 4.2.3.2 Simulación en el dominio del tiempo

Se simularon las contingencias de Severidad 4 en líneas de 220 kV y 500 kV, junto con las desconexiones de equipos de compensación de potencia reactiva en el escenario base considerando los conversores

GFM de la Tabla 6. Adicionalmente, se consideró en servicio un condensador sincrónico de 600 MVAr conectado a las barras de 220 kV

Se verifica que en todos los casos las tensiones del sistema de transmisión resultan estables y el desempeño del sistema es satisfactorio en todas las contingencias simuladas.

La Figura 17 presenta la transferencia de potencia total por el enlace HVDC Kimal – Lo Aguirre para cada caso de simulación. La Figura 18 presenta las tensiones en los nodos de 220 kV de las subestaciones Lagunas, Alto Jahuel y Puerto Montt para cada una de las contingencias.



Figura 17. Transferencia de potencia total por el enlace HVDC Kimal – Lo Aguirre para las contingencias simuladas en el escenario demanda baja de noche de 2030 de mínima inercia con conversores GFM y compensación sincrónica en Kimal 220 kV.





Figura 18. Tensiones en nodos de 220 kV de las SSEE Lagunas (arriba), Alto Jahuel (centro) y Puerto Montt (abajo) para las contingencias simuladas en el escenario demanda alta de día de 2030 de mínima inercia con conversores GFM y compensación sincrónica en Kimal 220 kV.

#### 4.2.3.3 Falla de un polo del enlace HVDC

Se simuló la contingencia 25b que consiste en una falla bifásica a tierra en barras de 220 kV de la SE Kimal seguida de la desconexión de un polo del enlace HVDC Kimal – Lo Aguirre. La Figura 19 presenta las transferencias de potencia por el sistema de transmisión junto con la potencia transmitida por cada inversor del lado Lo Aguirre. Se observa que luego del despeje de la falla se desconectan dos inversores y la potencia total por el enlace HVDC Kimal – Lo Aguirre en estado estacionario se reduce a la mitad de su valor prefalla. La respuesta dinámica del sistema resulta satisfactoria.



Figura 19. Transferencias de potencia por el sistema de transmisión (arriba) y potencia transmitida por cada inversor del lado Lo Aguirre (abajo) ante la contingencia C25b (falla un polo enlace HVDC) en el escenario de demanda alta y mínima inercia de 2030.

### 4.2.4 Demanda baja de noche en 2030 (30T2-GF)

Se simularon las contingencias de Severidad 4 en líneas de 220 kV y 500 kV, junto con las desconexiones de equipos de compensación de potencia reactiva en el escenario base considerando los conversores GFM de la Tabla 6. Adicionalmente, se consideró en servicio un condensador sincrónico de 600 MVAr conectado a las barras de 220 kV

Se verifica que en todos los casos las tensiones del sistema de transmisión resultan estables y el desempeño del sistema es satisfactorio en todas las contingencias simuladas.

La Figura 20 presenta la transferencia de potencia total por el enlace HVDC Kimal – Lo Aguirre, para cado caso de simulación. La Figura 21 presenta las tensiones en los nodos de 220kV de las S/E Lagunas, Alto Jahuel y Puerto Montt para cada una de las contingencias.



Figura 20. Transferencia de potencia total por el enlace HVDC Kimal – Lo Aguirre para las contingencias simuladas en el escenario demanda baja de 2030 de mínima inercia con conversores GFM y compensación sincrónica en Kimal 220 kV.

Lagunas 220 kV



Figura 21. Tensiones en nodos de 220 kV de las SSEE Lagunas (arriba), Alto Jahuel (centro) y Puerto Montt (abajo) para las contingencias simuladas en el escenario demanda baja de 2030 de mínima inercia con conversores GFM y compensación sincrónica en Kimal 220 kV.

#### 4.2.4.1 Falla de un polo del enlace HVDC

Se simuló la contingencia 25b que consiste en una falla bifásica a tierra en barras de 220 kV de la SE Kimal seguida de la desconexión de un polo del enlace HVDC Kimal – Lo Aguirre. La Figura 22 presenta las transferencias de potencia por el sistema de transmisión junto con la potencia transmitida por cada inversor del lado Lo Aguirre. Se observa que luego del despeje de la falla se desconectan dos inversores y la potencia total por el enlace HVDC Kimal – Lo Aguirre en estado estacionario se reduce a la mitad de su valor prefalla. La respuesta dinámica del sistema resulta satisfactoria.



Figura 22. Transferencias de potencia por el sistema de transmisión (arriba) y potencia transmitida por cada inversor del lado Lo Aguirre (abajo) ante la contingencia C25b (falla un polo enlace HVDC) en el escenario de demanda baja y mínima inercia de 2030.

# **5** Conclusiones

En esta Actividad 3 se evaluó el uso de inversores formadores de red (GFM) como solución técnica para alcanzar un nivel mínimo de fortaleza de red y de inercia en el sistema, en particular en la zona del Norte Grande, que asegure su desempeño óptimo. En este sentido, los inversores GFM presentan una alternativa al uso de condensadores sincrónicos evaluada en la Actividad 2.

Las conclusiones del análisis pueden resumirse como sigue:

- En la actualidad, la tecnología GFM tiene aplicación solo en pequeñas redes aisladas o en los parques eólicos offshore conectados al sistema mediante un enlace en corriente continua (HVDC, como por ejemplo la generación eólica en el Mar del Norte, Alemania, donde el inversor opera de manera aislada, sin necesidad de coordinar con otros inversores).
- Si bien se prevé un fuerte impulso en el desarrollo de esta tecnología como alternativa a los inversores seguidores de red utilizados en la actualidad para la generación eólica y fotovoltaica de gran escala, es poco probable que esta tecnología está disponible en el mercado antes del 2025.
- Con ello, no parece prudente contemplar el uso de inversores GFM en el plan de expansión al 2025. Para este horizonte se recomienda el uso de condensadores sincrónicos como discutidos en la Actividad 2.
- A partir del 2025 y según el estado de madurez de esta tecnología, el Coordinador tendrá la opción de usar inversores GFM como alternativa al despliegue de más condensadores sincrónicos en el año 2030.
- El estudio de esta alternativa en el marco de esta Actividad 3 del proyecto indica que se puede garantizar un desempeño satisfactorio del sistema con los inversores GFM, siendo que:
  - Se disponga de unos 3135MVA de generación estática con tecnología GFM (el resto de la generación estática seguirá siendo tipo seguidora de red). Este valor se deberá poner en relación con los 1600Mvar de compensación sincrónica que de lo contrario serían necesarios adicionalmente para el escenario 2030 (ver Actividad 2)
  - El valor de inercia (sintética) a aportar por los inversores GFM será equivalente a la que aportan los condensadores sincrónicos adicionales (2030) con 1.6GVAs. Siendo que la fuente de energía primaria de los inversores (solar/eólica) no es firme, se deberá prever la instalación de baterías en paralelo. La capacidad de las baterías no se ha investigado en este estudio. Notar que su dimensionamiento podrá realizarse en función de atender otro tipo de servicios auxiliares a la red (ej. provisión de reserva primaria).

Como sensibilidad se investigó el uso de de condensadores estáticos (máquinas sincrónicas virtuales) como alternativa a la instalación de condensadores sincrónicos ya desde el año 2025. En este caso, los

condensadores estáticos asumen la función de los condensadores sincrónicos de la Actividad 2, en la medida de garantizar suficiente fortaleza de red e inercia en el sistema. Mientras que la solución técnicamente funciona, resultará necesario instalar condensadores GM por un valor de 4800MVA, por lo que esta opción no puede competir con la solución anterior.