

Estudio para la Implementación del Módulo de Medición Fasorial

Julio 2020

Departamento de Modelación y Aplicaciones EMS Subgerencia de Aseguramiento de la Operación Gerencia de Operación

Rev	Fecha	Comentario	Realizó	Revisó / Aprobó
1	15-07-2020	Informe Preliminar	DMAp	JVC-REV
3	27-07-2020	Informe Final	DMAp	JVC-REV

Contenidos

Κŧ	esumen	EJECUTIVO	
1	Intro	oducción y objetivos	5
	1.1	Antecedentes Normativos	5
	1.2	Definiciones y abreviaturas	5
2	Met	odología de Trabajo	7
	2.1	Criterios para implementación de puntos de registros	g
3	Ante	cedentes	10
	3.1	Estado actual de la red WAMS y puntos de monitoreo	10
	3.2	Arquitectura de la red WAMS del Coordinador	12
4	Requ	uerimientos de nuevos puntos de monitoreo	14
	4.1	Plan de Obras 2020-2021	14
	4.2	Evaluación de los Estudios establecidos en la Norma Técnica de SyCS y la Norma Técnica de SSCC	18
	4.2.2	Restricciones de Transmisión por estabilidad de tensión	18
	4.2.2	2 Control de tensión	19
	4.2.3	B Plan de Recuperación de Servicio	23
	4.2.4	Estabilizadores de Sistemas de Potencia	24
	4.2.5	Planes de Defensa contra Contingencias Críticas y Extremas – PDCC y PDCE	25
	4.3	Monitoreo de centrales generadoras como fuentes de fenómenos dinámicos	26
	4.4	Requerimientos de monitoreo a partir de la operación real del SEN	26
	4.5	Ubicación de los puntos de monitoreo	27
	4.5.2	Zona Norte Grande	29
	4.5.2	2 Interconexión	30
	4.5.3	3 Zona Norte Chico	31
	4.5.4	Zona Centro	32
	4.5.5	Zona Sur	34
	4.6	Requerimientos particulares	36
	4.7	Sistema de comunicación	36
	4.8	Otros requerimientos	37
	4.8.2	Sincronización de datos fuera de línea ante pérdida de comunicación	37
	4.8.2	2 Integración de nuevas PMU	37

5	Cond	clusiones	39
6	Ane	xos	42
		Especificaciones de equipamiento	
		Documentación	
		Instalación y puesta en servicio	
		erencias	

Resumen Ejecutivo

El presente informe se enmarca en el Anexo Técnico Sistema de Monitoreo (ATSM) de la Norma Técnica de Seguridad y Calidad de Servicio (NT SyCS) que establece en su Artículo 63 que el Coordinador Eléctrico Nacional deberá realizar a más tardar el 31 de julio de cada año un estudio sobre la instalación, implementación, revisión y actualización del Módulo de Medición Fasorial (MMF), el cual deberá determinar y actualizar los puntos de registro en que se instalarán las PMU, la arquitectura (centralizada o distribuida) del MMF, la ubicación de los concentradores asociados, en los casos que corresponda, y las aplicaciones requeridas por el software para análisis de datos.

Cabe señalar que el MMF tiene como objetivo que el Coordinador adquiera las mediciones en tiempo real de fasores de tensión y corriente, de tal forma que pueda verificar los requerimientos del Artículo 4-28 de la NT SyCS.

En este Estudio se muestra la actual arquitectura del MMF implementada en el Sistema Eléctrico Nacional (SEN), así como un catastro de los puntos de medida y su estado de implementación a la fecha. Adicionalmente, para la determinación de los nuevos puntos de registro en que se instalarán las PMU, se consideraron los fenómenos dinámicos presentes en el SEN, requerimientos de monitoreo dinámico del Coordinador, así como la consideración de los cambios topológicos y proyectos en construcción para el periodo de evaluación (años 2020-2021).

En primer lugar, se realizó un levantamiento de los requerimientos de monitoreo y de los fenómenos dinámicos presentes en la operación real del SEN. Paralelamente, se recopilaron los antecedentes de los proyectos de generación y transmisión actuales y en construcción más relevantes para ser monitoreados. Desde el punto de vista de generación, se definieron como relevantes aquellas instalaciones de capacidad instalada mayor o igual a 200 MW para el caso de generación térmica o hidráulica; y de capacidad instalada mayor o igual a 100 MW para el caso de centrales eólicas y solares fotovoltaicas. Para las instalaciones de transmisión, se consideraron los proyectos que modifican la topología existente del Sistema de Transmisión Nacional (STN) o tramos con restricciones por estabilidad dinámica, y las instalaciones del STN de 500kV como puntos relevantes para la detección de fenómenos inter-área (oscilaciones de pequeña señal, estabilidad angular y de tensión, entre otros).

Por otra parte, se evaluaron los resultados de los estudios vigentes del Capítulo 6 de la NT SyCS y del Capítulo 3 de la NT SSCC, entre ellos el Estudio de Restricciones del Sistema de Transmisión, Estudio de Control de Tensión y Requerimientos de Potencia Reactiva, Estudio de Plan de Recuperación de Servicio, Estudio para Plan de Defensa Contra Contingencias Extremas y Estudio de PSS.

Con respecto a las restricciones en el sistema de transmisión, el tramo Rahue – Puerto Montt 220 kV presenta limitaciones por estabilidad y/o regulación de tensión, sin embargo, actualmente se cuenta con PMU en S/E Rahue y S/E Puerto Montt, por lo que no se requieren puntos de monitoreo adicionales.

Respecto del control de tensión y requerimientos de potencia reactiva, dentro de las barras más débiles desde el punto de vista del soporte de potencia reactiva en condiciones post-contingencia, se determinó la necesidad de monitoreo en la barra Agua Santa 110 kV. Además, a partir de la identificación de los recursos más críticos para el control de tensión en cada área, se determinó que se deberán instalar puntos de monitoreo en los lados AT de los transformadores elevadores del equipo SVC Plus de Nueva Pan de Azúcar.

En relación con los planes de recuperación de servicio, se verificó que los puntos de registro actuales del MMF permiten monitorear la frecuencia de, al menos, una barra en todas las islas factibles en estado de recuperación.

Respecto al estudio de estabilizadores de sistemas de potencia (PSS), se indica la existencia de modos de oscilación ante determinadas condiciones de operación. Debido a lo anterior, se determinó la necesidad de nuevos puntos de monitoreo en bornes de algunas unidades generadores que cuenten con PSS habilitados.

Finalmente, a partir de la operación real del SEN, se detectaron necesidades particulares de monitoreo dinámico, tanto para el monitoreo en tiempo real como para el análisis post-operativo.

En resumen, los nuevos puntos de registro que se deberán implementar en el SEN, considerando todos los aspectos indicados, se muestran en las siguientes tablas:

Instalaciones de Transmisión

Zona	Ubicación PMU	Instalación a monitorear	Fenómeno / Requerimiento de monitoreo	Coordinado	Comunicar con PDC
Norte Grande	Paño BT3 en S/E Arica	Lado 66 kV Autotransformador N° 3 de S/E Arica	Isla eléctrica en 66 kV	Engie S.A.	Crucero
	Paño K3 en S/E Nueva Pan de Azúcar	Lado AT Transformador SVC Plus de S/E Nueva Pan de Azúcar¹	Estabilidad de Tensión	Interchile S.A.	
Norte Chico	Paño K6 en S/E Nueva Pan de Azúcar	Lado AT Transformador SVC Plus de S/E Nueva Pan de Azúcar¹	Estabilidad de Tensión	Interchile S.A.	Maitencillo
	Paño HT3 en S/E Diego de Almagro	Lado 110 kV Autotransformador N° 3 de S/E Diego de Almagro	Isla eléctrica en 110 kV	Transelec S.A.	
Centro	Paño H3 en S/E Agua Santa	LT Agua – Santa – Miraflores 110 kV C1	Estabilidad de Tensión	Chilquinta Energía S.A.	Alto Jahuel
	Paño en Línea S/E Pichirropulli 500kV	LT Pichirropulli – Nueva Puerto Montt 500kV C1 ²	Monitoreo de STN 500kV	Transelec Holding Rentas Ltda.	
Sur	Paño en Línea S/E Nueva Puerto Montt 500kV	LT Pichirropulli – Nueva Puerto Montt 500kV C2 ²	Monitoreo de STN 500kV	Transelec Holding Rentas Ltda.	Charrúa

¹ Se acepta un solo equipo PMU que permita monitorear la totalidad de reactivos absorbidos o inyectados por el SVC Plus de Nueva Pan de Azúcar.

² Línea será inicialmente energizada en 220kV. Se requiere la PMU cuando la línea se encuentre operando en 500kV.

Instalaciones de Generación

Zona	Ubicación PMU	Instalación a monitorear	Fenómeno / Requerimiento de monitoreo (y usos adicionales)	Coordinado	Comunicar con PDC	
	Bornes U2	Unidad 2 Central Angamos	Oscilaciones PSS	Empresa Eléctrica Angamos S.A.		
		Ampliación Finis Terrae Etapa I ¹		Enel Green Power del Sur SpA		
		Parque Fotovoltaico San Pedro		GPG Solar Chile 2017 SpA		
		Parque Solar Fotovoltaico Nuevo Quillagua		Parque Eólico Quillagua SpA		
		Santa Isabel Etapa I		TSGF SpA		
		Parque Eólico Tchamma		AR Tchamma SpA		
Norte	Lado AT del	Parque Eólico Cerro Tigre		AR Cerro Tigre SpA	Crucero	
Grande	Transformador Elevador del	Sol de Lila	Parque generador de alta capacidad disponible	Enel Green Power del Sur SpA		
	parque	Planta FV Sol del Desierto Fase I	uispoilible	Parque Solar Fotovoltaico Sol del Desierto SpA		
		Parque FV Pampa Tigre		AR Pampa SpA		
		Parque FV Domeyko		Enel Green Power del Sur SpA		
		Parque Eólico Ckani		AR Alto Loa SpA		
		Parque Eólico Calama		Engie Energía Chile S.A.		
		Proyecto FV Coya		PV Coya SpA		
		Río Escondido		AR Escondido SpA		
Norte Chico	Lado AT del Transformador	Campos del Sol	Parque generador de alta capacidad	Enel Green Power del Sur SpA	Maitencillo	
Norte Chico	Elevador del parque	Parque FV Malgarida II	disponible	Acciona Energía Chile SpA	Maitenciio	
		Valle Escondido		AR Valle Escondido SpA		
Centro	Bornes Generador	Central Campiche	Oscilaciones PSS	AES Gener S.A.	Alto Jahuel	
	Lado AT del Transformador	Parque Eólico Malleco – Fase I	Parque generador de	Wpd Malleco SpA	GI '	
Sur	Elevador del parque	Parque Eólico Renaico II	alta capacidad disponible	Enel Green Power del Sur SpA	Charrúa	

Zona	Ubicación PMU	Instalación a monitorear	Fenómeno / Requerimiento de monitoreo (y usos adicionales)	Coordinado	Comunicar con PDC
		Parque Eólico Malleco – Fase II		Wpd Malleco SpA	
		Los Olmos		Energía Eólica Los Olmos SpA	
		PE Puelche Sur		AR PUELCHE SUR SpA	

¹ En caso que el punto de interconexión de este proyecto no sea el mismo de Finis Terrae o corresponda a un parque diferente.

En relación con la evaluación de la actual arquitectura distribuida del MMF del SEN, no se determinó la necesidad de realizar modificaciones en ella.

1 Introducción y objetivos

El Artículo 63 Anexo Técnico Sistema de Monitoreo (ATSM) de la Norma Técnica de Seguridad y Calidad de Servicio (NT SyCS) establece que el Coordinador Eléctrico Nacional deberá realizar, a más tardar el 31 de julio de cada año, un estudio sobre instalación, implementación, revisión y actualización del módulo de medición fasorial.

Por su parte, el módulo de medición fasorial (MMF) tiene por objeto que el Coordinador adquiera en tiempo real las mediciones de fasores de tensión y corrientes, de tal forma que se posibilite verificar los requerimientos del Artículo 4-28 de la NT SyCS.

Conforme con lo anterior, este estudio tiene como objetivo determinar y actualizar los puntos de registro en que se instalarán las PMU, la arquitectura del MMF, la ubicación de los concentradores asociados (PDC), y las aplicaciones requeridas por el software para análisis de datos.

Es importante destacar que los puntos de monitoreo existentes y propuestos permiten el monitoreo dinámico de la red en tiempo real y el análisis post operativo, lo que permite el aseguramiento de la operación, mejorar la calidad de servicio, así como también, mejorar la conciencia situacional de los despachadores del Coordinador Eléctrico Nacional para la toma de decisiones en tiempo real.

1.1 Antecedentes Normativos

Desde el punto de vista normativo, se considera tanto la normativa nacional vigente, como también estándares internacionales relacionados. Entre ellos se destacan los siguientes:

• IEEE C37.118-2005: IEEE Standard for Synchrophasors for Power Systems

• IEEE C37.118.1-2011: IEEE Standard for Synchrophasors Measurement for Power Systems

• IEEE C37.118.2-2011: IEEE Standard for Synchrophasors Data Transfer for Power Systems

IEEE C37.118.1a-2014: IEEE Standard for Synchrophasors Data Transfer for Power Systems.

Amendment 1: Modification of select performance requirements

- Norma Técnica de Seguridad y Calidad de Suministro (NT SyCS), diciembre 2019
- Norma Técnica de Servicios Complementarios (NT SSCC), diciembre 2019
- Anexo Técnico Sistema de Monitoreo de la NT SyCS (ATSM), diciembre 2019

1.2 Definiciones y abreviaturas

ATSM: Anexo Técnico Sistema de Monitoreo de la NT SyCS

Coordinador o Coordinador

Eléctrico Nacional: Coordinador Independiente del Sistema Eléctrico Nacional

CPF: Control Primario de Frecuencia
CSF: Control Secundario de Frecuencia

CT: Control de Tensión

Gran Centro de Generación: Central o subestación del sistema que concentra 200 MW o más de capacidad de

generación

Estudio MMF o Estudio: Estudio Anual para la Implementación del Módulo de Medición Fasorial,

requerido por el Artículo 43 del ATSM

NT SyCS: Norma Técnica de Seguridad y Calidad de Servicio NT SSCC: Norma Técnica de Servicios Complementarios

PMU: Phasor Measurement Unit – Unidad de Medición Fasorial
PDC: Phasor Data Concentrator – Concentrador de Datos Fasoriales

PDC Corporativo: Concentrador de Datos Fasoriales del Coordinador

PDC Local: Concentrador de Datos Fasoriales distribuido ubicado en el SEN

SEN: Sistema Eléctrico Nacional

STN: Sistema de Transmisión Nacional

WAMS: Wide Area Monitoring System – Sistema de Monitoreo de Área Amplia

2 Metodología de Trabajo

El presente estudio se desarrolló según el siguiente marco de trabajo:

- Revisión del estado actual de actualización, expansión y funcionamiento del MMF del Coordinador.
- Requerimientos de monitoreo dinámico específicos por parte del Coordinador.
- Análisis de los cambios topológicos del SEN en el período 2019-2020 y los fenómenos dinámicos en la operación real que se han originado a partir de ellos.
- Estudio del plan de obras declaradas en construcción, a diciembre de 2021.
- Revisión de los estudios definidos en el capítulo 6 de la Norma Técnica de Seguridad y Calidad de Servicio y
 en el Capítulo 3 de la Norma Técnica de Servicios Complementarios, considerando el período 2020-2021.
- Definición de aplicaciones requeridas que permiten observar los fenómenos dinámicos.
- Análisis de la validez de la arquitectura actual de la red WAMS, y los eventuales cambios requeridos.
- Definición de nuevos puntos de monitoreo.
- Definición de especificaciones de comunicaciones y estándares de seguridad.
- Presentación del plan de actualización de los puntos de monitoreo actuales, y expansión a nuevos puntos de monitoreo.

En la Figura 2.1, se presenta un diagrama de flujo de la metodología general aplicada en el desarrollo del estudio.

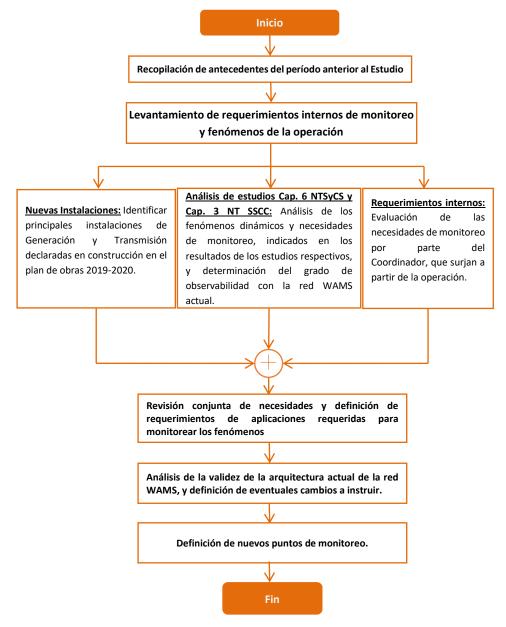


Figura 2.1 Metodología para el desarrollo del Estudio MMF.

2.1 Criterios para implementación de puntos de registros

En relación con la ubicación de los puntos de registro, se mantienen los criterios para permitir la detección de fenómenos dinámicos que se presentan en el SEN y la identificación de las fuentes que originan o participan en dichos fenómenos.

A continuación, se indican los criterios y fenómenos que se consideraron para efectos de determinar los puntos de monitoreo:

- Oscilaciones de potencia, tensión y frecuencia, previstas en estudios u observadas en la operación real.
- Restricciones del sistema de transmisión o fenómenos de estabilidad dinámicos.
- Monitoreo de la frecuencia eléctrica.
- Monitoreo de los Planes de Defensa contra Contingencias Extremas y Contingencias Críticas.
- Impacto de Instalaciones de transmisión relevantes actuales y futuras, de acuerdo con el plan de obras.
- Monitoreo de islas de acuerdo con los planes de recuperación de servicio.
- Normalización del registro de medidas (V, I, f, $\Delta f/\Delta t$) en PMU existentes.
- Monitoreo dinámico de unidades de generación que cuentan con PSS y que participan en los modos de oscilaciones presentes en el SEN.
- Monitoreo del desempeño dinámico de instalaciones críticas para la seguridad del sistema.
- Centros de generación con capacidad instalada mayor a 200 MW para centrales sincrónicas, y mayor a 100 MW para centrales solares y eólicas.

3 Antecedentes

3.1 Estado actual de la red WAMS y puntos de monitoreo

De acuerdo con los resultados de los estudios anteriores, se presenta en la Tabla 3.1 el listado de los puntos de monitoreo requeridos previo al presente estudio y su estado actual de implementación.

Tabla 3.1 Puntos actuales de monitoreo. E/C: En Construcción, E/S: En Servicio

N°	_	0.15	Coordinado		Estado
PMU	Zona	S/E	responsable Instalación a monitorear		actual
1		Lagunas	Transelec	Crucero - María Elena - Lagunas 220kV	E/S
2		Parinacota	Transemel	Parinacota - Cóndores 220kV	E/C
3		Tarapacá	Transelec	Tarapacá - Cóndores 220kV	E/C
4	1	Collahuasi	CMDIC	Encuentro - Collahuasi 220kV C1	E/S
5	1	Crucero	Transelec	Crucero - Encuentro 220kV C1	E/C
6		Vimal	Transelec	Kimal - Laberinto 220kV C1	E/C
7		Kimal	Transelec	Kimal - Los Changos 500 kV C1	E/C
8		Tocopilla	Engie	Tocopilla - Crucero 220kV C1	E/S
9		Angamos	AES Gener	Angamos - Kapatur 220kV C2	E/S
10			Minera Escondida	Domeyko - Laguna Seca 220kV C1	E/S
11		Domeyko	Minera Escondida	Domeyko - Puri 220kV C1	E/C
12			Minera Escondida	SVC de S/E Domeyko	E/C
13		Atacama	Transelec	O'higgins - Atacama 220kV C1	E/C
14		Andes	AES Gener	Andes - Salta 345kV	E/S
15		Andes	AES Gener	Barra BP1 y BP2 345kV	E/S
16		Salta	AES Gener	Andes - Salta 345kV	E/S
17	Nonto	Chacaya	Engie	Chacaya - Mejillones 220kV C1	E/S
18	Norte	Kapatur	Transelec	Kapatur - Los Changos 220kV C1	E/C
19	Grande	Bolero	Helio Atacama Tres	PFV Bolero	E/C
20		El Arriero	EGP del Sur	PE Sierra Gorda	E/C
21		Rande	EGP del Sur	PFV Finis Terrae	E/C
22		C. Tocopilla	Engie	U16	E/C
23		C. IEM	Engie	IEM1	E/C
24		C. Kelar	Tamakaya	TG1	E/C
25		C. Kelai	Tamakaya	TG2	E/C
26		C. Mejillones	Engie	CTM3 TG	E/C
27		C. Angamos	AES Gener	ANG1	E/C
28		C. Cochrane	AES Gener	CCH2	E/C
29		C. Norgener	AES Gener	NTO1	E/C
30		Laberinto	CTNG	Laberinto - Kapatur 220kV C1	E/C
31		O'Higgins	CTNG	O'Higgins - Kapatur 220kV C1	E/C
32		Cerro Dominador	Atacama Generación	PFV Cerro Dominador	E/C
33		C. Cerro Dominador	Cerro Dominador CSP	Lado AT Transformador Elevador Cerro Dominador CSP	E/C
34		Granja Solar	María Elena Solar	PFV Granja Solar	E/C
35		Atacama Solar II	Atacama Solar	Lado AT Transformador Elevador SE Atacama Solar II	E/C
36		Los Changos	TEN	Los Changos - Cumbres 500kV C1	E/S
37		Cumbres	TEN	Cumbres - N. Cardones 500kV C2	E/S
38		D do Almagra	Transelec	Diego de Almagro - Carrera Pinto 220kV C1	E/S
39	Norte Chica	D. de Almagro	Transelec	SVC Plus de S/E Diego de Almagro	E/C
40	Norte Chico	Cardenas	Eletrans	Cardones - Diego de Almagro 220kV C1	E/S
41]	Cardones	Transelec	CER de S/E Cardones	E/C
42		N. Cardones	Interchile	N. Cardones - N. Maitencillo 500kV C1	E/C
43		Maitencillo	Guacolda	Maitencillo - Guacolda 220kV C1	E/S

N°	N° Coor		Coordinado	nado		
PMU	Zona	S/E	responsable	Instalación a monitorear	Estado actual	
44			Transelec	Maitencillo - Don Héctor 220kV C1	E/S	
45			Transelec	Maitencillo - Don Héctor 220kV C2	E/S	
46		N. Maitencillo	Interchile	N. Maitencillo - N. Pan de Azúcar 500kV C2	E/C	
47		Punta Colorada	Transelec	P. de Azúcar - Punta Colorada 220kV C1	E/S	
48		Pan de Azúcar	Transelec	Pan de Azúcar - Don Goyo 220kV C2	E/S	
49		raii de Azdeai	Transelec	Pan de Azúcar - La Cebada 220kV C1	E/S	
50		N. Pan de Azúcar	Interchile	N. Pan de Azúcar - Polpaico 500kV C1	E/C	
51		Conejo	Conejo Solar	PFV Conejo Solar	E/C	
52		Luz del Norte	Luz del Norte	PFV Luz del Norte	E/C	
53		Llano de Llampos	Amanecer Solar	PFV Llano de Llampos	E/C	
54		El Romero	Acciona	PFV El Romero	E/C	
55		El Pelícano	El Pelícano	PFV El Pelícano	E/C	
56		San Juan	San Juan	PE San Juan	E/C	
57		El Arrayán	El Arrayán	PE El Arrayán	E/C	
58		Don Goyo	Los Cururos	PE Los Cururos	E/C	
59		Cabo Leones I	Cabo Leones I	PE Cabo Leones I	E/C	
60		Cabo Leones II	Ibereólica	Lado AT Transformador SE Cabo Leones II	E/C	
61		Sarco	Aela Eólcia Sarco	PE Sarco	E/C	
62		Las Palmas	Transelec	Las Palmas - Los Vilos 220kV C1	E/C	
63		C. Nehuenco	Colbún	TG	E/C	
64		C. Nehuenco II	Colbún	TG	E/C	
65		C. San Isidro	Enel Generación	TG	E/C	
66		C. San Isidro II	Enel Generación	TG	E/C	
67		Los Vilos	Transelec	Los Vilos - Nogales 220kV C2	E/S	
68	V Región	C Quintero	Enel Generación	TG1	E/C	
69		Nogales	Transelec	Los Vilos - Tap Doña Carmen - Nogales 220kV C1	E/S	
70		Nogaics	Transelec	Nogales - Quillota 220kV C1	E/S	
71		San Luis	Transquillota	San Luis - Quillota 220kV C1	E/S	
72		Polpaico	Transelec	Polpaico - Alto Jahuel 500kV C2	E/S	
73		Lo Aguirre	Transelec	Lo Aguirre - Alto Jahuel 500kV C1	E/S	
74		Lo / iguille	Transelec	Lo Aguirre - Alto Jahuel 500kV C2	E/S	
75		Las Vegas	Chilquinta	Las Vegas - San Pedro 110kV C1	E/C	
76			Transelec	Lado 154kV Trafo A. Jahuel	E/S	
77	Centro	Alto Jahuel	Transelec	Ancoa - Alto Jahuel 500kV C1	E/S	
78	centro	7 lito Juliuci	Transelec	Ancoa - Alto Jahuel 500kV C2	E/S	
79			AJTE	Ancoa - Alto Jahuel 500kV C3	E/S	
80		Quilapilún	Chungungo	PFV Quilapilún	E/C	
81		C. Nueva Renca	G. Metropolitana	TG	E/C	
82		C. Las Lajas	Alto Maipo	U1	E/C	
83		C. Alfalfal	Alto Maipo	U1	E/C	
84		C. Chacayes	Pacific Hydro Chacayes	U1	E/C	
85		C. Colbún	Colbún	U2	E/C	
86		C. Pehuenche	Enel Generación	U2	E/C	
87		Itahue	Transelec	Itahue - Curillinque 154kV	E/S	
88			Transelec	Lado 154kV Trafo Itahue	E/S	
89		C. Curillinque	Enel Generación	U1	E/C	
90	154kV		Transelec	Tinguiririca - La Higuera 154kV C2	E/S	
91	137KV	Tinguiririca	Transelec	Tinguiririca - Tap Malloa 154kV C1	E/S	
92			Transelec	Tinguiririca - Tap Malloa 154kV C2	E/S	
93		C. La Confluencia	Tinguiririca Energía	U1	E/C	
94		C. La Higuera	Tinguiririca Energía	U2	E/C	
95	Centro-Sur	Colbún	Colbún Transmisión	Colbún - Candelaria 220kV C1	E/S	
96		Ancoa	Transelec	Ancoa - Pehuenche 220kV C1	E/S	

N°	Zona	S/E	Coordinado	Instalación a monitorear	Estado
PMU		- , -	responsable		actual
97			AJTE	Ancoa - Alto Jahuel 500kV C4	E/S
98			Transelec	Ancoa - Alto Jahuel 500kV C1	E/C
99		Entre Ríos	Transelec	Entre Ríos - Ancoa 500kV C2	E/C
100			Transelec	Charrúa - Pangue 220kV	E/S
101		Charrúa	Transelec	Charrúa - Antuco 220kV C1	E/S
102		Charrua	Transelec	Charrúa - Palmucho 220kV	E/S
103			Transelec	Charrúa - Entre Ríos 500kV C1	E/S
104		C. Antuco	Enel Generación	U1	E/C
105		C. El Toro	Enel Generación	U3	E/C
106		C. Pangue	Enel Generación	U2	E/C
107		C. Ralco	Enel Generación	U1	E/C
108	Concepción	Concepción	Transelec	Concepción - San Vicente 154kV C1	E/C
109	Concepcion	Coronel	CGE	Coronel - Bocamina 154kV C1	E/C
110		Valdivia	Transelec	Valdivia - Pichirropulli 220kV C2	E/S
111		Rahue	Transelec	Pichirropulli - Rahue 220kV C1	E/C
112		Puerto Montt	Transelec	Puerto Montt - Canutillar 220kV C1	E/S
113		Puerto Montt	Transelec	CER de S/E Puerto Montt	E/C
114		Melipulli	STS	Melipulli - Chiloé 220kV	E/C
115	Sur	C. Angostura	Colbún	U1	E/C
116		C. Canutillar	Colbún	U2	E/C
117		C. Rucatayo	Rucatayo	U1	E/C
118		Ciruelos	Transelec	Cautín - Ciruelos 220kV C2	E/C
119		Aurora	Aela Eólica Llanquihue	PE Aurora	E/C
120		San Gabriel	Parque Eólico San Gabriel	PE San Gabriel	E/C

Se destaca que el punto de monitoreo indicado en el Estudio MMF 2018 asociado al proyecto de seccionamiento de la línea Nva. Pan de Azúcar – Polpaico 2x500kV ya no se considera en el presente Estudio debido a que la instalación asociada no está considerada en el actual plan de obras.

3.2 Arquitectura de la red WAMS del Coordinador

Actualmente, el MMF del Coordinador está implementado a través de una arquitectura distribuida, mediante un PDC Corporativo ubicado en el *datacenter* de Movistar Apoquindo, y cinco PDC Locales ubicados en las SS/EE Crucero, Maitencillo, Alto Jahuel, Ancoa y Charrúa. Estos PDC locales reciben los datos directamente de las PMU del SEN, y solo cumplen funciones de almacenamiento y comunicación de datos hacia el PDC Corporativo, exceptuando el PDC Crucero que, además, cuenta con la capacidad de disponer aplicaciones locales de procesamiento. La arquitectura distribuida de la red del MMF se observa en la Figura 3.1. Esta arquitectura privilegia la flexibilidad y expansibilidad de la red y otorga los niveles básicos de confiabilidad y disponibilidad de la información.

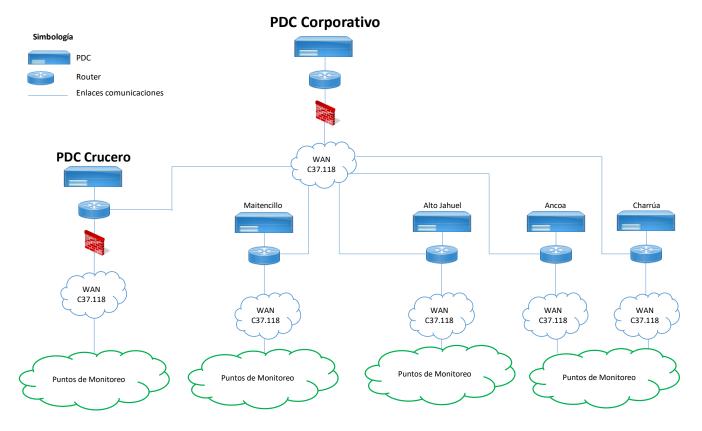


Figura 3.1 Diagrama esquemático de la arquitectura de la plataforma WAMS del Coordinador.

Respecto del software de monitoreo y aplicaciones, en el PDC Corporativo se encuentra instalada la plataforma WAProtector, la cual cuenta principalmente con las siguientes aplicaciones:

- Detector de diferencia angular.
- Detector de oscilaciones de baja frecuencia (0.001Hz-7.5Hz).
- Detector de fuentes de oscilación.
- Detector de rango de frecuencia.
- Detector de isla.
- Detector de tasas de cambio de variables.
- Detector de niveles (altos/bajos) de variables.
- Detector de estabilidad de tensión (curva PV).
- Detector de desbalances de tensión y corrientes.
- Cálculo de parámetros de líneas en tiempo real.

El protocolo de transferencia de datos fasoriales corresponde al estándar IEEE C37.118. Además, con el objetivo de aumentar la disponibilidad de datos, se establecieron requerimientos de sincronización de datos frente a la pérdida de comunicación entre los PDC Locales y el PDC Corporativo. De esta manera, ante pérdidas de comunicaciones entre PDC, los datos son almacenados en los PDC Locales y enviados al PDC Corporativo una vez restablecida la comunicación. Los requerimientos particulares de este ítem se detallan en la sección 4.8.

4 Requerimientos de nuevos puntos de monitoreo

4.1 Plan de Obras 2020-2021

El Art. 65 del ATSM establece un plazo de adecuación de 18 meses para todas las instalaciones que lo requieran a partir de la publicación del Estudio para la Implementación del MMF. Considerando que este estudio se revisa anualmente, y con el objetivo de asegurar que el efecto de los proyectos de alto impacto pueda ser monitoreado desde su puesta en servicio, se consideran y evalúan todas las obras declaradas en construcción por la CNE al 30 de junio de 2020, y con una fecha de puesta en servicio hasta el 31 de diciembre de 2021.

A partir de los proyectos de generación y transmisión señalados, se determina la necesidad de implementar nuevos puntos de monitoreo, teniendo en cuenta las modificaciones topológicas que introducen, por ejemplo, que originen conexiones provisorias en Tap-Off, el seccionamiento de circuitos de una línea del sistema de transmisión nacional o nuevas subestaciones que modifiquen la topología de líneas con PMU existentes. Por otra parte, se identifican los proyectos de generación con potencia instalada mayor a 200 MW en el caso de unidades generadoras sincrónicas, y con potencia instalada mayor o igual a 100 MW en el caso de centrales de tecnología solar o eólica.

A continuación, en la Tabla 4.1 y Tabla 4.2 se presenta la lista de obras de generación y transmisión que se consideran en el análisis, y que tienen fecha de puesta en servicio hasta el 31 de diciembre de 2021.

Tabla 4.1 Plan de obras de generación del Sistema Eléctrico Nacional de posible interés para el monitoreo de fenómenos dinámicos y/o de estabilidad del sistema.

	Tenemenos amarineos y o de estabilidad del sistema						
Nombre Empresa	Nombre Proyecto	Fecha Estimada de Interconexión	Tipo de Tecnología	Potencia Neta Total [MW]	Punto de Conexión		
Ibereólica Cabo Leones II S.A.	Cabo Leones II	jul-20	Eólico	204	S/E Maitencillo 220 kV		
Atacama Solar S.A.	Atacama Solar II	sept-20	Solar Fotovoltaico	150	S/E Lagunas 220 kV		
Enel Green Power del Sur SpA	Ampliación Finis Terrae Etapa I	sept-20	Solar Fotovoltaico	126,2	S/E Rande 220 kV		
GPG Solar Chile 2017 SpA	Parque Fotovoltaico San Pedro	sept-20	Solar Fotovoltaico	106	S/E Seccionadora Lasana, Línea 1x220 kV Calama - Solar Jama		
Parque Eólico Quillagua SpA	Parque Solar Fotovoltaico Nuevo Quillagua	sept-20	Solar Fotovoltaico	100	Tap Off Quillagua 220 kV		
TSGF SpA	Santa Isabel Etapa I13	oct-20	Solar Fotovoltaico	158,7	S/E Seccionadora Ana María 220 kV, Línea Encuentro – Lagunas 2x220 kV		
AR Tchamma SpA	Parque Eólico Tchamma	oct-20	Eólico	155,4	S/E Seccionadora Pallata 220 kV, Línea Encuentro – SGO 1x220 kV		
AR Escondido SpA	Río Escondido	oct-20	Solar Fotovoltaico	145	S/E Cardones 220 kV		

Nombre Empresa	Nombre Proyecto	Fecha Estimada de Interconexión	Tipo de Tecnología	Potencia Neta Total [MW]	Punto de Conexión
Wpd Malleco SpA	Parque Eólico Malleco – Fase I	oct-20	Eólico	135,1	S/E Río Malleco 220 kV
Enel Green Power del Sur SpA	Campos del Sol	nov-20	Solar Fotovoltaico	381	S/E Carrera Pinto 220 kV
AR Cerro Tigre SpA	Parque Eólico Cerro Tigre	nov-20	Eólico	184,8	S/E Farellón 220 kV
Enel Green Power del Sur SpA	Sol de Lila	nov-20	Solar Fotovoltaico	152	S/E Andes 220 kV
Enel Green Power del Sur SpA	Parque Eólico Renaico II	nov-20	Eólico	144	S/E Central Parque Eólico Renaico 220 kV
Alto Maipo SpA	Las Lajas	dic-20	Hidro – Pasada	267	S/E Florida 110 kV
Alto Maipo SpA	Alfalfal II	dic-20	Hidro – Pasada	264	S/E Los Almendros 220 kV
Parque Solar Fotovoltaico Sol del Desierto SpA	Planta FV Sol del Desierto Fase I	dic-20	Solar Fotovoltaico	175	S/E María Elena 220 kV
Wpd Malleco SpA	Parque Eólico Malleco – Fase II	feb-21	Eólico	137,9	S/E Río Malleco 220 kV
Energía Eólica Los Olmos SpA	Los Olmos	feb-21	Eólico	100	Nueva S/E Seccionadora Los Olmos 220 kV en Línea 1x220 kV Tolpán - Mulchén
Acciona Energía Chile SpA	Parque FV Malgarida II	mar-21	Solar Fotovoltaico	162,7	S/E Cumbre 220 kV
AR Valle Escondido SpA	Valle Escondido	abr-21	Solar Fotovoltaico	105	S/E Seccionadora Valle Escondido 220 kV, Línea 1x220 kV Río Escondido - Cardones
AR Pampa SpA	Parque FV Pampa Tigre	abr-21	Solar Fotovoltaico	100	S/E Seccionadora Tigre 220 kV, Línea 1x220 kV Cerro Tigre - Farellón
Enel Green Power del Sur SpA	Parque FV Domeyko	may-21	Solar Fotovoltaico	186,2	S/E Puri 220 kV
AR Alto Loa SpA	Parque Eólico Ckani	jul-21	Eólico	107,2	S/E El Abra 220 kV
Engie Energía Chile S.A.	Parque Eólico Calama	ago-21	Eólico	150	Tap Off en Línea 1x220 kV Calama – Solar Jama
AR PUELCHE SUR SpA	PE Puelche Sur16	nov-21	Eólico	152,4	S/E Frutillar Norte 220 kV
PV Coya SpA	Proyecto FV Coya	dic-21	Solar Fotovoltaico	180	S/E Seccionadora Coya 678 220 kV, Línea 1x220 kV Crucero – Radomiro Tomic

Tabla 4.2 Plan de obras de transmisión del Sistema Eléctrico Nacional de posible interés para el monitoreo de fenómenos dinámicos y/o de estabilidad del sistema.

Nombre Empresa	Nombre Proyecto	Fecha de Entrada en Operación Según Decreto
Eletrans S.A.	Nueva Línea 1X220 kV A. Melipilla – Rapel	oct-18
Eletrans S.A.	Nueva Línea 2X220 kV Lo Aguirre – A. Melipilla, con un circuito tendido	oct-18
Consorcio Red Eléctrica Chile SpA y Cobra Instalaciones y Servicios S.A.	Subestación Seccionadora Nueva Pozo Almonte 220 kV	feb-19
Transelec S.A.	Nueva S/E Seccionadora Río Malleco 220 kV	jul-20
Enel Distribución S.A.	S/E Seccionadora Nueva Lampa 220 kV	ago-20
Engie Energía Chile S.A.	Nueva S/E Seccionadora Algarrobal 220 kV	nov-20
Engie Energía Chile S.A.	S/E Seccionadora El Rosal 220 kV	nov-20
Sociedad Austral de Transmisión Troncal S.A.	S/E Seccionadora Río Toltén 220 kV	nov-20
Engie Energía Chile S.A.	S/E Seccionadora Nueva Chuquicamata 220 kV	nov-20
Interconexión Eléctrica S.A.	Nuevo Banco de Autotransformadores 1x750 MVA 500/220 kV S/E Nueva Cardones S/E Nueva Maitencillo S/E Nueva Pan de Azúcar	feb-21
Transelec S.A.	Nueva S/E Seccionadora Frutillar Norte 220 kV	may-21
Transelec S.A.	S/E Nueva Ancud 220 kV	may-21
Transelec Holding Rentas Ltda.	Línea 2x500 kV Pichirropulli – Nueva Puerto Montt, energizada en 220 kV	jul-21

A partir de los proyectos listados en las tablas anteriores, y de acuerdo con los criterios indicados en la sección 2.1, la Tabla 4.3 indica los puntos de monitoreo para las nuevas instalaciones con fecha de puesta en servicio hasta diciembre de 2021:

Tabla 4.3 Puntos de monitoreo de acuerdo con plan de obras nuevas 2020-2021.

Zona	Ubicación PMU	Instalación a monitorear ¹	Empresa Responsable	Comunicar con PDC
	Lado AT del Transformador Elevador del parque	Ampliación Finis Terrae Etapa I	Enel Green Power del Sur SpA	Crucero
	Lado AT del Transformador Elevador del parque	Parque Fotovoltaico San Pedro	GPG Solar Chile 2017 SpA	Crucero
	Lado AT del Transformador Elevador del parque	Parque Solar Fotovoltaico Nuevo Quillagua	Parque Eólico Quillagua SpA	Crucero
	Lado AT del Transformador Elevador del parque	Santa Isabel Etapa I13	TSGF SpA	Crucero
	Lado AT del Transformador Elevador del parque	Parque Eólico Tchamma	AR Tchamma SpA	Crucero
	Lado AT del Transformador Elevador del parque	Parque Eólico Cerro Tigre	AR Cerro Tigre SpA	Crucero
Norte	Lado AT del Transformador Elevador del parque	Sol de Lila	Enel Green Power del Sur SpA	Crucero
Grande	Lado AT del Transformador Elevador del parque	Planta FV Sol del Desierto Fase I	Parque Solar Fotovoltaico Sol del Desierto SpA	Crucero
	Lado AT del Transformador Elevador del parque	Parque FV Malgarida II	Acciona Energía Chile SpA	Crucero
	Lado AT del Transformador Elevador del parque	Parque FV Pampa Tigre	AR Pampa SpA	Crucero
	Lado AT del Transformador Elevador del parque	Parque FV Domeyko	Enel Green Power del Sur SpA	Crucero
	Lado AT del Transformador Elevador del parque	Parque Eólico Ckani	AR Alto Loa SpA	Crucero
	Lado AT del Transformador Elevador del parque	Parque Eólico Calama	Engie Energía Chile S.A.	Crucero
	Lado AT del Transformador Elevador del parque	Proyecto FV Coya	PV Coya SpA	Crucero
	Lado AT del Transformador Elevador del parque	Río Escondido	AR Escondido SpA	Maitencillo
Norte Chico	Lado AT del Transformador Elevador del parque	Campos del Sol	Enel Green Power del Sur SpA	Maitencillo
	Lado AT del Transformador Elevador del parque	Valle Escondido	AR Valle Escondido SpA	Maitencillo
	Lado AT del Transformador Elevador del parque	Parque Eólico Malleco – Fase I	Wpd Malleco SpA	Charrúa
	Lado AT del Transformador Elevador del parque	Parque Eólico Renaico II	Enel Green Power del Sur SpA	Charrúa
Sur	Lado AT del Transformador Elevador del parque	Parque Eólico Malleco – Fase II	Wpd Malleco SpA	Charrúa
Sui	Lado AT del Transformador Elevador del parque	Los Olmos	Energía Eólica Los Olmos SpA	Charrúa
	Lado AT del Transformador Elevador del parque	PE Puelche Sur16	AR PUELCHE SUR SpA	Charrúa
	Paño de Línea en S/E Pichirropulli 500kV	LT Pichirropulli – Nueva Puerto Montt 500kV C1 ²	Transelec Holding Rentas Ltda.	Charrúa

Zona	Ubicación PMU	Instalación a monitorear¹	Empresa Responsable	Comunicar con PDC
	Paño de Línea en S/E Nueva Puerto Montt 500kV	LT Pichirropulli – Nueva Puerto Montt 500kV C2 ²	Transelec Holding Rentas Ltda.	Charrúa

¹ Para los proyectos sin información de la topología definitiva se debe monitorear la instalación indicada.

4.2 Evaluación de los Estudios establecidos en la Norma Técnica de SyCS y la Norma Técnica de SSCC

A partir del análisis de los estudios vigentes requeridos por el Capítulo 6 de la NT SyCS y el Capítulo 3 de la NT SSCC, se determinó la necesidad de nuevos puntos de monitoreo.

4.2.1 Restricciones de Transmisión por estabilidad de tensión

En el Estudio de Restricciones en el Sistema de Transmisión (ERST) publicado en enero de 2020, se determinaron las máximas transferencias post-contingencia por el sistema de transmisión nacional. Particularmente, en aquellas líneas afectas a problemas asociados a regulación y estabilidad de tensión se realizaron sensibilizaciones mediante el aumento de transferencias, determinándose sus límites por estabilidad de tensión.

La evaluación de las restricciones en el sistema de transmisión contempla las limitaciones impuestas por las capacidades térmicas de las líneas y los elementos serie del sistema de transmisión, las limitaciones operacionales por estabilidad de tensión, estabilidad de frecuencia, estabilidad transitoria y permanente, de acuerdo con las exigencias de seguridad y calidad de servicio establecidas en el Capítulo 5 de la NT SyCS.

En el ERST se establecen las transferencias máximas por estabilidad de tensión para las líneas de gran longitud, así como por regulación de tensión en los extremos de dichas líneas. En la Tabla 4.4 se muestran aquellos tramos con límites en condición post contingencia para las zonas Norte Grande, Norte Chico, 500 kV y Sur del SEN.

Tabla 4.4 : Líneas del SEN con restricciones de transferencias que presentan condiciones de inestabilidad de tensión post-contingencia

Tramo	Circuito	Cap. Elementos Serie [MVA]	Máx. Transf. por Est. de tensión [MW]	Máx. Transf. por Reg. de tensión [MW]	Contingencia / Condición
Rahue – Puerto Montt 220kV	C1	183	99	68	Falla 1 unidad C. Canutillar,
Rahue – Puerto Montt 220kV	C2	145	33	08	CER Pto. Montt F/S

Para el tramo Rahue – Puerto Montt indicado en la Tabla 4.4, se evalúa la necesidad de instalar puntos de monitoreo adicionales:

² Línea será inicialmente energizada en 220kV. Se requiere la PMU cuando la línea se encuentre operando en 500kV.

• Tramo Rahue - Puerto Montt 220 kV

Este tramo presenta limitaciones de transferencia por regulación de tensión de 68 [MW] entre S/E Rahue y S/E Puerto Montt ante la salida de una unidad de Canutillar, considerando el CER de Puerto Montt fuera de servicio. Dado que tanto en S/E Puerto Montt como en S/E Rahue se cuenta con unidades PMU para el monitoreo de la tensión, no se propone un nuevo punto de monitoreo adicional.

Considerando estos antecedentes, en este estudio no se proponen nuevos puntos de monitoreo adicionales por limitaciones por estabilidad o regulación de tensión.

En la Tabla 4.5 se resumen los puntos de monitoreo requeridos en los estudios anteriores en tramos que presentaban limitaciones por estabilidad o regulación de tensión.

Tabla 4.5 Tramos con puntos de monitoreo por restricciones de transferencia instruidos en estudios anteriores.

Área	Tramo	Estado PMU	Ubicación PMU	
Norte	Laberinto – Kapatur 2x220kV	E/C	J11 de S/E Laberinto	
Grande	O'Higgins – Kapatur 2x220kV	E/C	J7 de S/E O'Higgins	
		E/S	J4/J5 de S/E Punta Colorada	
	P. de Azúcar – P. Colorada 2x220kV	E/S	J3 de S/E Pan de Azúcar	
		E/S	J4 de S/E Pan de Azúcar	
Norte	P. de Azúcar – Nogales 2x220kV	E/S	J3 de S/E Pan de Azúcar	
Chico		E/S	J4 de S/E Pan de Azúcar	
		E/C	J4 de S/E Las Palmas	
		E/S	J2 de S/E Los Vilos	
		E/S	J7/J8 S/E Nogales	
		E/S	K1 de S/E Alto Jahuel	
	Ancoa – Alto Jahuel 500kV	E/S	K2 de S/E Alto Jahuel	
Centro		E/S	K5 de S/E Alto Jahuel	
		E/S	K6 de S/E Ancoa	
C	Cautín – Ciruelos 220kV	E/C	J6 de S/E Ciruelos	
Sur	Pichirropulli – Rahue 220kV	E/S	J2 de S/E Rahue	

4.2.2 Control de tensión

En el Estudio de Control de Tensión y Requerimientos de Potencia Reactiva (ECTyRPR) publicado en diciembre de 2019, se determinaron las barras más débiles en cada Área de Control de Tensión (ACT) del SEN, tanto para condiciones de pre y post contingencia. En todas las condiciones y escenarios analizados se cumple con los límites de tensión establecidos en la NT SyCS. Se realizó un levantamiento de la disponibilidad de puntos de monitoreo en las vecindades de dichas barras.

Por otro lado, también se identificaron, para cada ACT, los recursos más críticos para el control de tensión, en términos de la incidencia $\partial Q_{\rm iny}/\partial Q_{\rm barra}$ sobre las barras más débiles del área, y se evaluó la disponibilidad de puntos de monitoreo en las cercanías de dichos recursos.

ACT Norte Grande

El área Norte Grande corresponde a las instalaciones desde la S/E Los Changos hacia el norte y se distinguen dos subáreas de CT: la subárea sur, que se compone principalmente por las SS/EE Andes 220 kV, Nueva Zaldívar 220 kV, Domeyko 220 kV y Puri 220 kV, y la subárea norte, que se compone por las SS/EE al norte de la subárea sur.

Se identificó que, en estado pre y post contingencia, la barra más débil de la subárea norte corresponde a Parinacota 220 kV. Esta condición fue identificada en el estudio MMF 2017, en donde se instruyó una PMU que actualmente se encuentra en construcción. Por otro lado, en esta subárea los recursos de control de tensión con mayor incidencia corresponden a las centrales Tocopilla, Cochrane, Norgener, Angamos, el Complejo Chacaya y la unidad IEM. En cuanto a la subárea sur, la barra más débil corresponde a Andes 220 kV.

Actualmente, hay una PMU en construcción para la S/E Parinacota y en S/E Andes se tiene monitoreo en la barra de 345 kV y en la línea Andes – Salta 345 kV, sin embargo, no existe monitoreo con PMU en Andes 220 kV.

ACT Norte Chico

El área Norte Chico incluye los sistemas de 500, 220 y 110 kV comprendidos entre las barras de 500 kV de S/E Los Changos, por el norte, y las barras de 500 kV de S/E Polpaico y de 220 kV de S/E Los Vilos, por el sur, pero sin incluir ninguna de dichas barras, las cuales corresponden a las ACT adyacentes. Esta área, se divide en el subsistema Centro-Sur y la subárea Norte.

Con la incorporación de los segundos transformadores de 500/220 kV en las SS/EE Nueva Cardones, Nueva Maitencillo y Nueva Pan de Azúcar, y con el proyecto de compensación reactiva Nueva Pan de Azúcar — Polpaico que incluye un SVC de +50/-150 MVAr en S/E Nueva Pan de Azúcar 220 kV, dos reactores de 100 MVAr en S/E Nueva Pan de Azúcar 500 kV y la distribución de la actual compensación serie de la línea Nueva Pan de Azúcar — Polpaico en partes iguales en ambos extremos de la línea, se produce un importante cambio en el perfil de tensiones de los sistemas de 500 y 220 kV.

Para el subsistema Centro-Sur en 500 kV, la incorporación de los segundos transformadores y la compensación reactiva Nueva Pan de Azúcar – Polpaico permiten operar permanentemente con toda la compensación serie del sistema de 500 kV Los Changos – Polpaico en servicio, excepto la del extremo Cumbre de la línea Los Changos – Cumbre sólo por razones de riesgo de resonancia subsíncrona, además, se reduce la necesidad de absorción de potencia reactiva por parte de los parques de generación renovable ubicados desde la S/E Maitencillo al sur. La barra más débil pre y post contingencia de este subsistema corresponde a Cumbre 500 kV y el recurso más eficaz para el control de tensión es el SVC de Nueva Pan de Azúcar.

En cuanto al nivel de tensión 220 kV del subsistema Centro-Sur, la determinación de la barra más débil depende de su forma de operación. Al operar abierto al norte de S/E La Cebada, la barra más débil pre contingencia

corresponde a la barra de Don Héctor 220 kV y post contingencia a la barra de Punta Colorada 220 kV. Si el sistema opera abierto al sur de S/E Don Héctor o enmallado, la barra más débil pre contingencia corresponde a Las Palmas 220 kV y post contingencia a La Cebada 220 kV. Los elementos de mayor eficacia en el control de tensión de este subsistema corresponde al SVC de Nueva Pan de Azúcar.

Respecto a la subárea Norte, la barra más débil pre y post contingencia corresponde a Paposo 220 kV y el recurso para el control de tensión con mayor eficiencia es el SVC Plus de Diego de Almagro.

Se cuenta actualmente con PMU en S/E Cumbre 500 kV y S/E Punta Colorada 220 kV. En S/E Don Héctor 220 kV no se cuenta con PMU.

ACT Centro

Esta área de control está conformada por los sistemas de 500, 220 y 110 kV de la zona centro del SEN, comprendidos, desde el norte entre las barras de Los Vilos 220 kV y las barras de Polpaico 500 kV, y desde el sur, por las barras de Alto Jahuel 500, 220, 110 kV. Se considera, además, una subárea correspondiente a la Región Metropolitana 220 y 110 kV, y una subárea correspondiente a la Quinta región Costa 220 y 110 kV.

En esta área, se identificaron las barras de Lo Aguirre 220 kV, Almendros 220 kV y Agua Santa 110 kV como las más débiles en operación normal y post contingencia. Actualmente, no se tiene monitoreo en Lo Aguirre 220 kV sino en el nivel de tensión de 500 kV, respecto a Almendros y Agua Santa, no se tiene punto de monitoreo en estas subestaciones.

ACT Centro – Sur

Esta área está comprendida entre las subestaciones Alto Jahuel 500, 220, y 154 kV y Cautín 220 kV, y dentro de ella se distinguen dos subáreas de CT, la zona de 154 kV que corresponde al subsistema de 154 y 66 kV entre las subestaciones Alto Jahuel e Itahue 154kV, y la zona de Concepción.

En esta área se identificaron a Entre Ríos 500 kV y Cautín 220 kV como las barras más débiles en operación normal y post contingencia. Para la subárea de 154 kV, la barra más débil pre contingencia es Rancagua 154 kV y post contingencia Alto Jahuel 154 kV. Existen puntos de monitoreo en Entre Ríos 500 kV y Alto Jahuel 154 kV, mientras que en Rancagua y Cautín no.

ACT Sur

El área Sur corresponde a las instalaciones al sur de S/E Mulchén. En esta área se identificó a Nueva Valdivia 220 kV como la barra más débil pre contingencia, y a Puerto Montt 220 kV como la barra más débil post contingencia. Existe monitoreo de Puerto Montt 220 kV mediante la PMU instalada en dicha S/E y, aunque no existe un punto de monitoreo en S/E Nueva Valdivia 220 kV, sí hay una PMU instalada en S/E Valdivia 220 kV. Los recursos principales de control de tensión en el área corresponden al CER Puerto Montt y a la central Planta Valdivia.

A continuación, se resumen las barras más débiles en condición pre y post contingencia por área.

Tabla 4.6 Barras débiles en condición pre y post-contingencia por área de control de tensión

Área de control de tensión	Barra más débil	Estado PMU	Ubicación PMU
Norte Grande	Parinacota 220 kV	E/C	Paño JT1 de S/E Parinacota
Norte Grande	Andes	E/S*	Barra 354 kV de S/ Andes
	Punta Colorada 220 kV	E/S	Paño J4/J5 de S/E Punta Colorada
Norte Chico	Don Héctor 220kV	E/S*	Paños J3 - J4 de S/E Maitencillo
	Cumbre 500kV	E/S	Paño K5/K6 de S/E Cumbre
	Agua Santa 110 kV	Nuevo Punto	Paño H3 de S/E Agua Santa
Centro	Lo Aguirre 220 kV	E/S*	Paño K5/K6 de S/E Lo Aguirre
	Almendros 220 kV	E/S*	Paño K1 de S/E Alto Jahuel
	Alto Jahuel 154 kV	E/S*	Paño AT6 de S/E Alto Jahuel
Centro – Sur	Rancagua 154 kV	E/S*	Paños A9 y Al10 de S/E Tinguiririca
Centro – Sur	Cautín 220 kV	E/C* Paño J6 de S/E Ciruelos	
	Entre Ríos 500 kV	E/C	Paño K13/K14 de S/E Entre Ríos
Sur	Nueva Valdivia 220 kV	E/S*	Paño J3 de S/E Valdivia
Sur	Puerto Montt 220 kV	E/S	Paño J4 de S/E Puerto Montt

^{*}La tensión de la barra puede ser monitoreada indirectamente a través del punto de monitoreo indicado, por lo que no se consideran PMU adicionales.

En cuanto al uso de recursos para el control de tensión y la necesidad de observar la respuesta dinámica de los equipos de compensación reactiva que prestan este servicio, a excepción del SVC de Nueva Pan de Azúcar ya existen equipos PMU instruidos para los CER/SVC del norte chico y norte grande con capacidad de inyección superior o igual a 100 MVAr, así como en el CER de Puerto Montt. En la Tabla 4.7 se observan los puntos de monitoreo asociados a los recursos de control de tensión por compensación reactiva.

Tabla 4.7 Puntos de monitoreo de equipos de compensación reactiva que prestan control de tensión.

Área	S/E	Paño	Equipo a monitorear	Estado PMU
Norte Grande	Domeyko	J10	SVC Domeyko	E/C
	Diego de Almagro	JT6	SVC Plus Diego de Almagro	E/C
Norte Chico	Cardones	JT4	CER Cardones	E/C
Norte Chico	Nueva Pan de Azúcar	К3	SVC Plus Nueva Pan de Azúcar	Nuevo Punto ¹
	Nueva Pan de Azúcar	К6	SVC Plus Nueva Pan de Azúcar	Nuevo Punto ¹
Sur	Puerto Montt	JT41/JT42	CER Puerto Montt	E/C

¹ Se acepta un solo equipo PMU que permita monitorear la totalidad de reactivos absorbidos o inyectados por el SVC Plus de Nueva Pan de Azúcar.

4.2.3 Plan de Recuperación de Servicio

El estudio para Plan de Recuperación de Servicio (PRS) publicado en marzo 2020 especifica las secuencias de maniobras para el restablecimiento del servicio en el sistema y/o en determinada isla eléctrica afectada. Por lo tanto, es necesario monitorear cada isla o zona definida para el PRS, para la posterior sincronización con otra isla o el resto del sistema.

El Norte Grande comprende 7 áreas para el PRS: Arica, Iquique, Tarapacá, Centro, O'Higgins, Capricornio y Cordillera. Para esta área no se requieren PMU adicionales de acuerdo con este estudio.

La zona Norte Chico comprende 4 áreas de recuperación: Diego de Almagro, Cardones, Pan de Azúcar e Interconexión. En esta zona, las PMU de las SS/EE Diego de Almagro, Cardones, Maitencillo y Pan de Azúcar, así como las PMU instruidas en las SS/EE Nva. Cardones, Nva Maitencillo y Nva. Pan de Azúcar permiten monitorear cada área, por lo tanto, no es requerido ningún punto nuevo de acuerdo con este estudio.

La zona de la Quinta Región se divide en dos áreas denominadas: Área Costa y Área Valle. Ambas áreas cuentan con PMU instruidas para el monitoreo de esta zona y de acuerdo con lo establecido en este estudio de PRS no se requieren PMU adicionales.

La zona Centro se divide en tres áreas: Área Cerro Navia, Área Alto Jahuel y Área Itahue. Dadas las PMU instruidas en estas áreas, no se requieren equipos adicionales para el monitoreo de la zona Centro, según el estudio PRS de 2019.

La Zona Sur por sus características presenta dos grandes áreas de consumos: Área Biobío y el Área Araucanía. Con las PMU instruidas en estas áreas se realiza monitoreo de la zona, por tal razón, y de acuerdo con este estudio, no es necesario instruir PMU adicionales.

A continuación, en la Tabla 4.8 se resumen las divisiones de zonas y áreas para el PRS y la correspondiente PMU para el monitoreo de señales en dicha área.

Tabla 4.8 Zonas y áreas para el PRS y puntos de monitoreo

Zona	Área	Estado actual PMU	Ubicación PMU	
	Arica		Paño J1 de S/E Lagunas	
	Iquique	E/S	Paño JT1 de S/E Parinacota	
	Tarapacá		Paño J3 de S/E Tarapacá	
Norte Grande	Centro	E/S Paño J15 de S/E Crucero Paño J6A de S/E Tocopilla		
	Capricornio	E/S	Paño J1 de S/E Chacaya	
	O'Higgins	E/S	Paño J3 de S/E Domeyko	
	Cordillera	E/S	Paño J5 de S/E Angamos	
	Diego de Almagro	E/S	Paño J1 de S/E Diego de Almagro	
Norte Chico	Cardones	E/S	Paño J12 de S/E Cardones	
	Pan de Azúcar	E/S	Paños J3 y J4 de S/E Pan de Azúcar	

Zona	Área	Estado actual PMU	Ubicación PMU
	Interconexión	E/C	Paños K2/K3 de S/E N. Cardones y K7/K8 de S/E N. Maitencillo
V Región	Costa	E/S	Paños J7/J8 y J8/J9 de S/E Nogales Paño J11/J12 de S/E San Luis
	Valle	E/C	Paño H4 de S/E Las Vegas
	Cerro Navia	E/S	Paño K1 de S/E Polpaico Paño K5/K6 de S/E Lo Aguirre
Centro	Alto Jahuel	E/S	Paño K6 de S/E Ancoa
	Itahue	E/S	Paño AT4 de S/E Itahue Paños A9 y A10 de S/E Tinguiririca
Sur	Bío-Bío	E/S E/C E/C	Paños J1, J4, J24 y K1 de S/E Charrúa Paño A3 de S/E Concepción Paño A1 de S/E Coronel
	Araucanía	E/S	Paño J3 de la S/E Valdivia Paño J4 de S/E Puerto Montt

4.2.4 Estabilizadores de Sistemas de Potencia

El estudio de sintonización de estabilizadores de sistemas de potencia (PSS) de febrero de 2020, determinó los modos de oscilación electromecánicos con mayor impacto en el sistema y las centrales que poseen mayor participación en ellos. En este estudio se encontró que las unidades que presentan mayor participación en los modos de oscilación encontrados son Campiche, la U16 de central Tocopilla, IEM y las unidades de Central Angamos.

Debido a la participación que tienen las unidades generadoras en estos modos de oscilación y los requerimientos de operación de los PSS asociados a ellas, se requieren puntos de monitoreo para evaluar el comportamiento en la amortiguación de dichas oscilaciones. En la Tabla 4.9 se indican los puntos de registros determinados para monitorear una muestra de las unidades generadoras que cuentan con estabilizadores PSS y los que participarían en los modos de oscilación que aparecen en el SEN.

Tabla 4.9 Puntos de Monitoreo Modos de Oscilación SEN

Zona	Instalación	Estado actual PMU	Ubicación PMU
	Central Tocopilla	E/S	Bornes Unidad Generadora U16
Norte Grande	Central IEM	E/S	Bornes Generador
Norte Grande	Central Angamos	E/C	Bornes Unidad Generadora U1
		Nuevo Punto	Bornes Unidad Generadora U2
Centro	Central Campiche	Nuevo Punto	Bornes Generador

4.2.5 Planes de Defensa contra Contingencias Críticas y Extremas – PDCC y PDCE

En el Estudio para el Diseño de Detalle del PDCE [5] se analizaron contingencias de Severidad 6 (fallas en una línea de doble circuito que deriva en la desconexión de ambos circuitos) en las líneas de 2x500kV entre las subestaciones Los Changos y Polpaico. Las fallas analizadas y su efecto en el SEN se muestran en la Tabla 4.10

Tramo de 2x500kV	Efecto en el SEN	Clasificación
Los Changos – Cumbre	Riesgo de apagón parcial	Contingencias Crítica
Cumbre – Nueva Cardones	Riesgo de apagón total	Contingencia Extrema
Nueva Cardones – Nueva Maitencillo	Riesgo de apagón total	Contingencia Extrema
Nueva Maitencillo – Nueva Pan de Azúcar	Riesgo de apagón total	Contingencia Extrema
Nueva Pan de Azúcar - Polpaico	Riesgo de apagón total	Contingencia Extrema

Tabla 4.10 Contingencias analizadas, su efecto y clasificación

Las fallas de severidad 6 en cualquier tramo del sistema de transmisión de 500kV entre las SS/EE Cumbre y Polpaico, operando con transferencias por sobre los umbrales de potencia detallados en el informe Estudio para el Diseño de Detalle del PDCE de la Zona Norte del SEN, califican como Contingencias Extremas. Estas fallas, que provocan la apertura de ambos circuitos de un tramo de 500kV, originan, con altas transferencias, sobrecargas inadmisibles en los sistemas de transmisión de 220kV y 110kV paralelos al sistema de 500kV, y propician la aparición de fenómenos de inestabilidad transitoria angular y/o de tensión, que rápidamente podrán derivar en la desconexión descontrolada de instalaciones del SEN, poniendo en riesgo su integridad (apagón total).

Los recursos planteados para afrontar estas fallas se describen a continuación:

Recurso 1 (estabilidad transitoria, sobrecargas y niveles de tensión):

- a) Separación del sistema y acciones complementarias: para atender las condiciones de inestabilidad sistémica derivada de la falla de severidad 6 en un tramo de 500 kV del Norte Chico, se deberá implementar un control automático de separación del sistema mediante la apertura de líneas 2x500kV o, de líneas 2x220kV y 110kV que están en paralelo al sistema de 2x500kV afectado por la falla. Esta separación del sistema deberá ir acompañada de otras acciones complementarias automáticas para su correcto funcionamiento.
- b) <u>Control de la Tensión</u>: la separación del sistema en algunas condiciones de operación puede originar actuación de EDAC (en el subsistema deficitario) y derivar en sobretensiones, por lo que se requiere implementar el control automático de conexión de reactores (en las subestaciones Los Changos, Nueva Cardones y Nueva Pan de Azúcar) y de desconexión de circuitos en la línea de 500 kV Los Changos Kimal.

Recurso 2 (control de frecuencia):

- a) EDACxCEx (subfrecuencia) en la zona del Norte Grande: la implementación de este EDAC en el Norte Grande, que actúe por tasa de caída de frecuencia y supervisado por frecuencia absoluta, es necesaria en los casos que la separación del sistema eléctrico (actuación del Recurso 1) provoca descensos abruptos de frecuencia debido a déficit de generación de gran magnitud en el subsistema al norte de la separación (altas transferencias Sur → Norte).
- b) EDAG en la zona del Norte Grande: la implementación de este EDAG en el Norte Grande es necesaria para los casos en que la separación o apertura controlada del sistema eléctrico (actuación del Recurso 1) provoca sobre frecuencias debido a excedentes de generación de gran magnitud en el subsistema al norte de la separación (altas transferencias Norte → Sur).
- c) <u>EDAG en la zona del Centro Sur</u>: la implementación de este EDAG en la zona del Centro Sur del SEN es necesaria para los casos en que la separación o apertura controlada del sistema eléctrico (actuación del Recurso 1) provoca sobre frecuencias debido a excedentes de generación de gran magnitud en el subsistema al sur de la separación (altas transferencias Sur → Norte).

Considerando el monitoreo del sistema de transmisión de 500 kV, actualmente existen implementadas PMU en, al menos, un circuito de todos los tramos de este sistema. Por lo tanto, solo se requiere la implementación de una PMU, que se instruyó en el informe 2019, en uno de los circuitos de la futura línea Los Changos – Kimal 500 kV. Para el monitoreo del desempeño de los recursos para el control de frecuencia, se disponen de las unidades PMU actualmente en servicio a lo largo de todo el sistema eléctrico.

Sin perjuicio de lo anterior, y considerando que los planes de defensa asociados a la Zona Norte del SEN se encuentran en la fase de ingeniería de detalle, se debe realizar una revisión del equipamiento para el monitoreo sincrofasorial una vez realizada esta tarea.

4.3 Monitoreo de centrales generadoras como fuentes de fenómenos dinámicos

En el presente Estudio no se detectó la necesidad de establecer criterios adicionales a los establecidos en los estudios anteriores para la detección de fenómenos dinámicos en el SEN, de manera que se cuente con la capacidad de identificar las fuentes de generación que originan o participan en estos fenómenos. Dichos criterios se detallan a continuación:

- Centrales generadoras de tecnología convencional, es decir, hidráulica (de embalse o pasada) y térmica (a carbón, turbinas a gas, ciclos combinados), con capacidad instalada mayor o igual a 200 MW, deberán adecuar sus instalaciones para permitir instalar puntos de monitoreo en bornes de sus unidades generadoras.
- Parques de generación de tecnología renovable solar o eólica, con capacidad instalada mayor o igual a 100 MW, deberán adecuar sus instalaciones e instalar PMU en el lado AT del o los transformadores elevadores.

4.4 Requerimientos de monitoreo a partir de la operación real del SEN

A partir de la operación real del Sistema Eléctrico Nacional, se han detectado necesidades particulares de monitoreo dinámico, tanto para el monitoreo en tiempo real como para el análisis post-operativo.

Las necesidades adicionales de monitoreo de estos fenómenos dinámicos detectados a partir de la experiencia de operación real del SEN fueron analizadas considerando el estado actual de la red WAMS y los requerimientos de monitoreo establecidos a partir de los estudios del Capítulo 6 de la NT SyCS.

A continuación, en la Tabla 4.11, se presenta un resumen del análisis y sus resultados:

Tabla 4.11 Análisis de los requerimientos de Monitoreo a partir de la operación real del SEN

Área	Monitoreo Requerido	Justificación	Punto de Monitoreo
Norte	Condición de isla eléctrica	Monitoreo ante condición de isla eléctrica en 66 kV y aplicación del PRS	Se requiere implementar un punto de monitoreo en el paño BT3 de S/E Arica.
Grande	Condición de isla eléctrica	Monitoreo ante condición de isla eléctrica en 110 kV y aplicación del PRS	Se requiere implementar un punto de monitoreo en los paños de trasformación de S/E Diego de Almagro.
Centro – Sur	Línea Polpaico – Lo Aguirre 500 kV	Transferencias y PDCE	El estado actual de la red WAMS permite observar el comportamiento sistémico dinámico en 500kV, para las SS/EE entre Polpaico y Charrúa.
	Línea Lo Aguirre – Cerro Navia 220 kV	Vinculación de zonas en PRS	El estado actual de la red WAMS permite observar el comportamiento sistémico dinámico en 220 kV de esta zona.
Sur	Línea Ciruelos – Pichirropulli 220 kV	Vinculación de zonas PRS.	El estado actual de la red WAMS permite observar el comportamiento sistémico dinámico en 220 kV de esta zona.
	Línea Laurel – Pichirropulli 220 kV	Monitoreo de vinculación de zonas PRS	El estado actual de la red WAMS permite observar el comportamiento sistémico dinámico en 220 kV de esta zona.
	Línea Chiloé – Pargua 220 kV	Monitoreo ante condición de isla eléctrica en sistema sur con Canutillar.	El estado actual de la red WAMS permite observar el comportamiento sistémico dinámico en 220 kV de esta zona.

4.5 Ubicación de los puntos de monitoreo

A continuación, se presenta de forma esquemática la ubicación de todos los puntos de monitoreo en instalaciones de transmisión del Sistema Eléctrico Nacional, considerando el equipamiento definido en los estudios de años anteriores y los nuevos puntos requeridos a partir del presente Estudio.

Los siguientes diagramas son indicativos, y consideran los proyectos de transmisión futuros. Cabe destacar que, en estos diagramas, no se muestran las compensaciones serie ni en derivación (shunt), por lo que en los casos

que existan PMU indicadas en paños con dichos equipamientos, se requiere que las medidas de tensión y corriente se obtengan según se indica en la Figura 4.1.

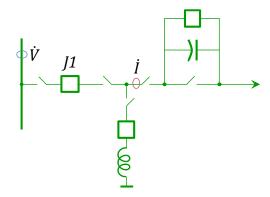


Figura 4.1 Medidas de tensión y corriente en caso de existir compensación serie y/o paralelo en el paño.

4.5.1 Zona Norte Grande

En la Figura 4.2 se muestra la ubicación de los equipos PMU en la Zona Norte Grande.

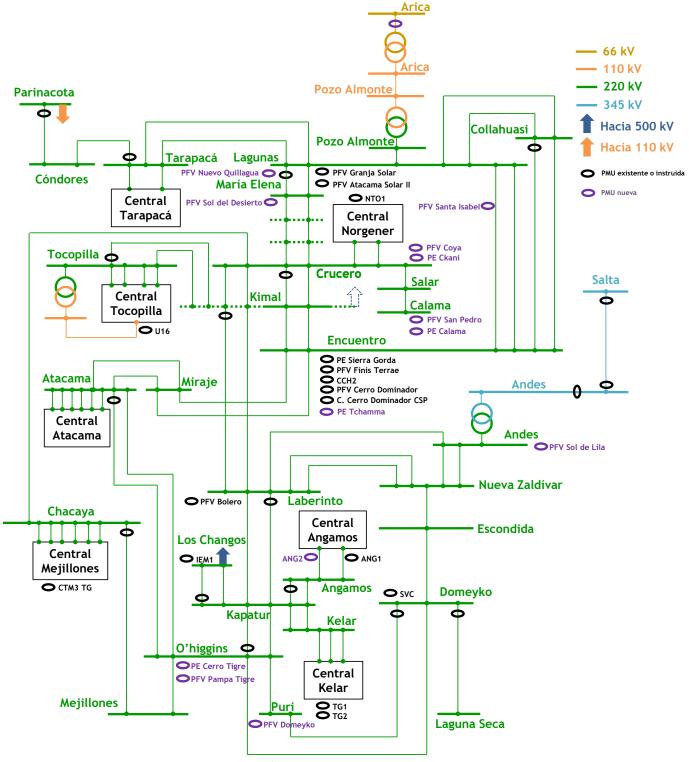


Figura 4.2 Ubicación de PMU en la Zona Norte Grande

4.5.2 Interconexión

En la Figura 4.3 se muestra la ubicación de los equipos PMU en las instalaciones de 500 kV correspondientes al sistema de 500kV al norte de S/E Polpaico.

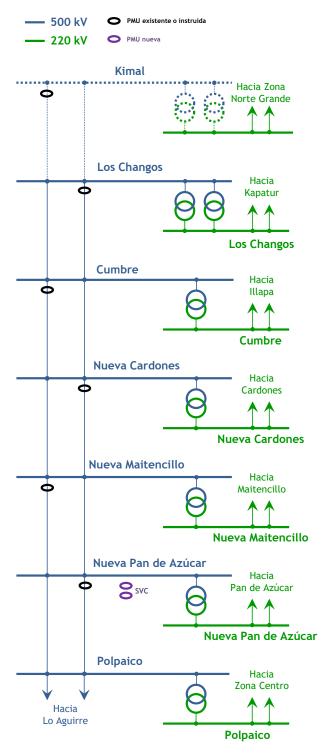


Figura 4.3 Ubicación de las PMU en la zona de 500kV Norte.

4.5.3 Zona Norte Chico

En la Figura 4.4 se muestra la ubicación de los equipos PMU en la Zona Norte Chico.

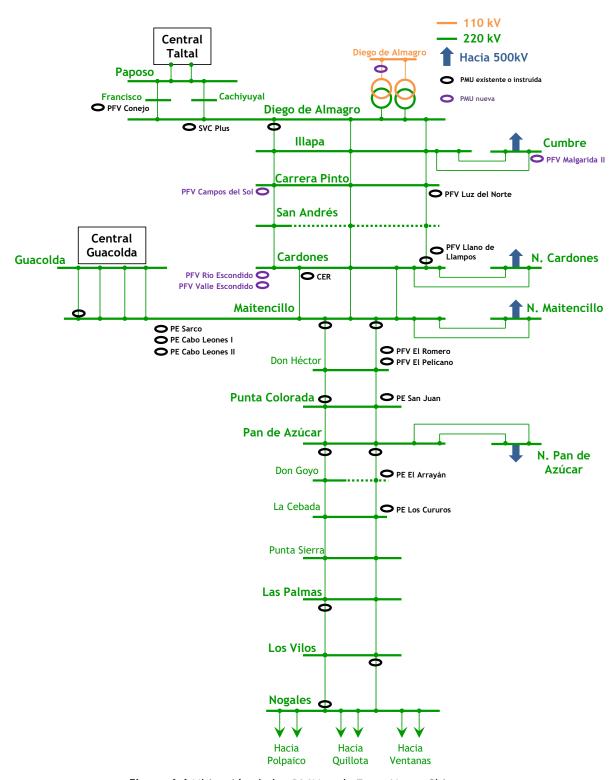


Figura 4.4 Ubicación de las PMU en la Zona Norte Chico

4.5.4 Zona Centro

En la Figura 4.5 y 0 se muestra la ubicación de los equipos PMU en la Zona Centro.

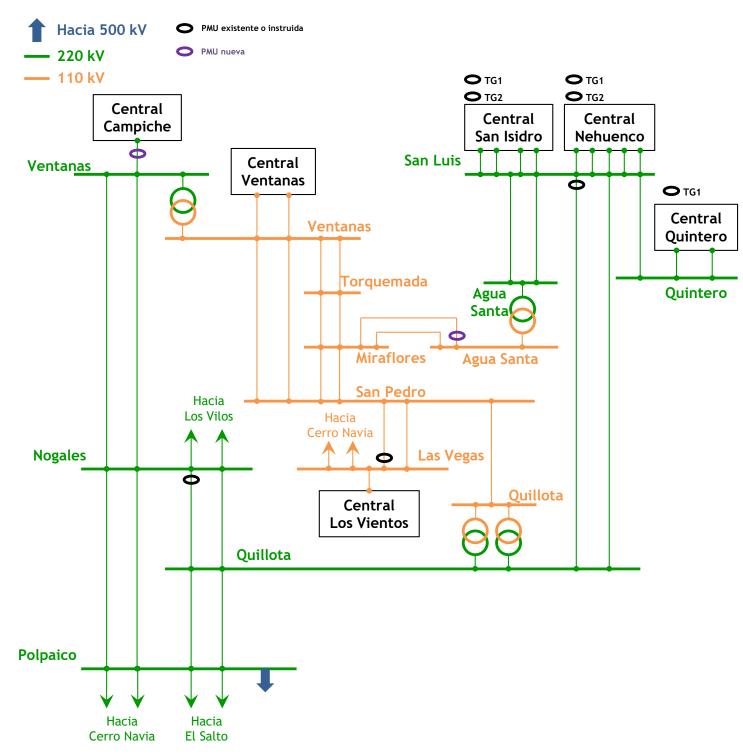


Figura 4.5 Ubicación de las PMU en la Zona Centro (Área de Quillota)

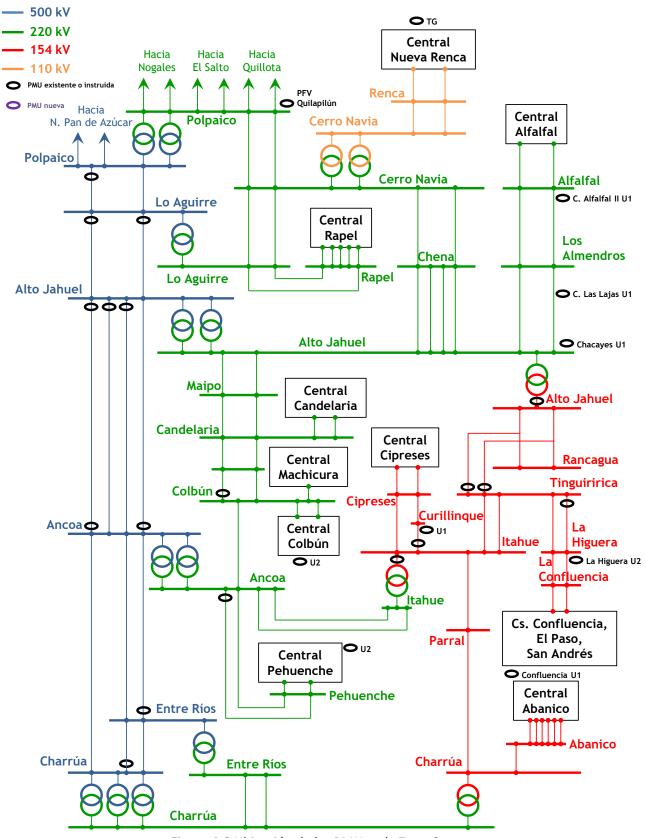


Figura 4.6 Ubicación de las PMU en la Zona Centro

4.5.5 Zona Sur

En la Figura 4.7 y Figura 4.8 se muestra la ubicación de los equipos PMU en la Zona Sur.

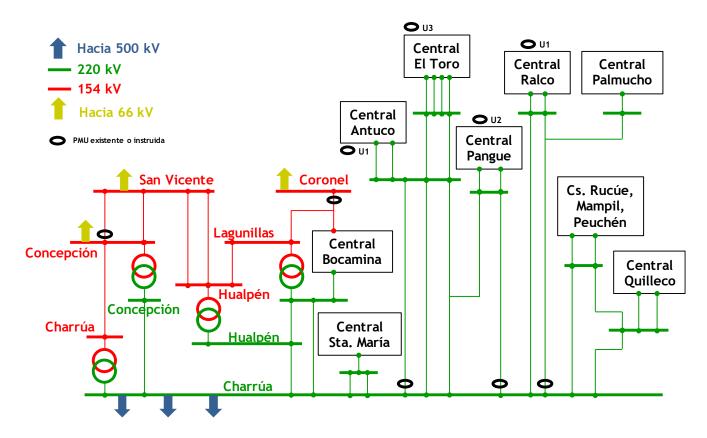


Figura 4.7 Ubicación de las PMU en la zona Sur (Área Concepción)

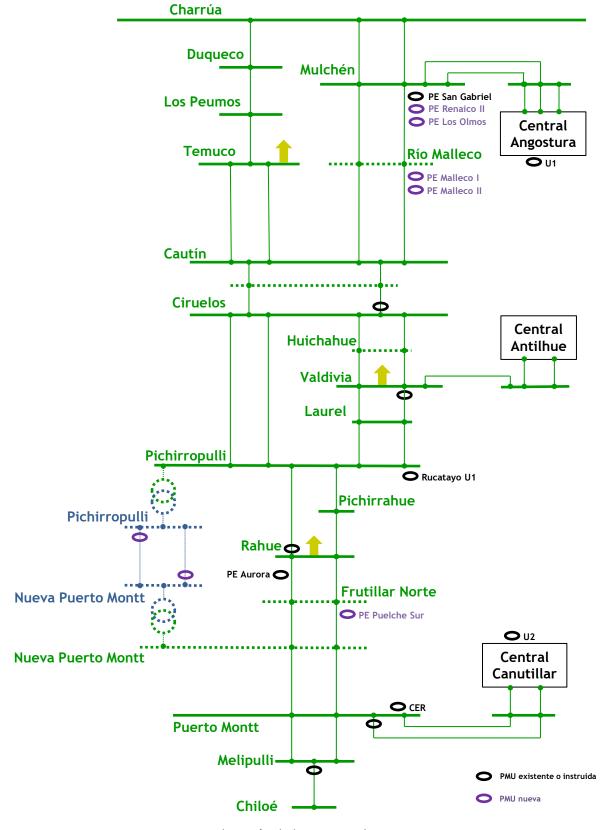


Figura 4.8 Ubicación de las PMU en la Zona Sur

4.6 Requerimientos particulares

En los requerimientos realizados de PMU se hace referencia a uno o a un conjunto de paños, al respecto, es muy importante señalar que lo que se debe entender es que el punto indicado debe ser monitoreado permanentemente, independiente de las configuraciones de paños (barra simple, doble barra, anillo, interruptor y medio, entre otras) donde cada PMU será instalada. En consecuencia, en los casos que lo requieran, se deberán instalar tantos equipos PMU como sea necesario de manera de garantizar que nunca deje de monitorearse el paño requerido, con absoluta independencia de la topología que pueda presentar la red eléctrica. La solución que se adopte, previo a su implementación, deberá ser presentada al Coordinador para su validación y aprobación. En los casos de puntos que monitoreen equipos de compensación reactiva, se deberá tomar las medidas del o los TP y TC trifásicos del lado AT del transformador elevador. Para los casos de PMU ubicados en bornes de unidades generadoras, se requiere enviar las medidas directamente de los TP y TC trifásicos conectados a los bornes de cada unidad generadora indicada en el presente estudio.

De la misma manera, con el propósito de garantizar que las medidas de tensión de barra estén siempre disponibles, por ejemplo, ante desconexión de una barra o sección de barra requerida, el Coordinado deberá implementar una solución que permita mantener la disponibilidad de dicha medida, como por ejemplo, mediante la conmutación de la adquisición de la tensión a otra barra o sección de barra y que opere bajo la lógica que, ante la no detección de la medida de tensión en una de las barras, el dispositivo reciba automáticamente la medida de tensión de una segunda barra (equivalente al mismo punto requerido por el Coordinador). Esta solución, previo a su implementación, deberá ser presentada al Coordinador para su validación y aprobación.

4.7 Sistema de comunicación

El sistema de comunicación es una de las tres partes principales de la red WAMS y es responsable de transportar los datos desde las PMU a los concentradores PDC Locales y desde ahí hacia el PDC Corporativo del Coordinador.

Desde el punto de vista de transmisión de datos fasoriales hacia los PDC Locales, el ancho de banda mínimo requerido deberá ser de 120 kbps por punto de monitoreo, no obstante, este valor tendrá que evaluarse en función de la cantidad de datos fasoriales que serán transmitidos, siendo responsabilidad del Coordinado disponer del ancho de banda adecuado para cumplir la disponibilidad de la información y la latencia requerida.

En la Tabla 4.12 se muestran los requerimientos de ancho de banda mínimos que se deberán disponer para la comunicación entre los PDC Locales y el PDC Corporativo.

Tabla 4.12 Anchos de banda mínimos requeridos para los PDC Locales

PMU asociadas Mínimo Técnico para

PDC	PMU asociadas al PDC	Mínimo Técnico para requerimientos [Mbps]
Crucero	50	6.00
Maitencillo	33	3.96
Alto Jahuel	29	3.48
Ancoa	10	1.20

PDC	PMU asociadas al PDC	Mínimo Técnico para requerimientos [Mbps]
Charrúa	29	3.48

Cabe destacar que, por cada PMU adicional que se incorpore a un PDC Local, el ancho de banda mínimo del enlace de comunicaciones del tramo correspondiente entre el PDC Local y el Corporativo deberá ser incrementado en 120 kbps.

4.8 Otros requerimientos

4.8.1 Sincronización de datos fuera de línea ante pérdida de comunicación

En caso de que algún PDC Local pierda comunicación con el PDC Corporativo, deberá almacenar la información que no ha podido ser trasmitida durante todo el tiempo que dure la interrupción. Una vez restablecida la comunicación, el PDC local deberá tener la capacidad de sincronizarse con el PDC Corporativo de manera de transmitir los datos almacenados correspondientes al período de la interrupción de las comunicaciones, sin que ello impida el correcto desempeño de cualquiera de las funcionalidades de la red WAMS. La transferencia de estos datos debe ser automática y transparente al PDC Local y al PDC Corporativo.

4.8.2 Integración de nuevas PMU

Durante el proceso de instalación y puesta en servicio de nuevos puntos de monitoreo, el propietario de cada PMU deberá verificar que el equipo cumpla con los requerimientos del ATSM y del presente Estudio. Para facilitar dicho proceso, en el Anexo 6.3 de este Estudio se detallan las acciones que se deben realizar previo y durante la puesta en servicio de las PMU. En particular, los aspectos que se deben verificar están asociados a:

PMU:

- Certificación IEEE C37.118.1-2011.
- Verificación de medidas en laboratorio.
- Pruebas de medición y comunicación en terreno (SAT).
- Sincronización de tiempo.
- Verificación de fuente de alimentación, considerando sistema de respaldo.

Comunicaciones:

- Pruebas PMU-PDC Local.
- Cumplimiento efectivo de los requerimientos de los enlaces de comunicaciones.
- Aspectos de ciberseguridad.

Mantenimiento y Documentación:

Protocolos de mantenimiento existentes.

 Documentación de diagramas, planos de disposición de equipos, datasheets, ajustes, procedimientos, entre otros.

Posterior a la instalación de la PMU, esta deberá ser integrada al PDC Local respectivo, para su posterior integración al PDC Corporativo. En dicho proceso, será el propietario de cada PMU el responsable de gestionar los siguientes aspectos de la conexión al PDC:

- Enlaces de comunicaciones entre PMU y PDC Local que se ajusten a los requerimientos del presente Estudio y del estándar IEEE C37.118, cuyos detalles se encuentran en el ATSM y en el Anexo 6.1 de este Estudio.
- Coordinación con empresa propietaria del PDC Local (permisos de trabajo, gestión de adecuaciones en la S/E, entre otros).
- Costos asociados a la integración de los nuevos puntos, incluyendo licencia de integración al PDC Local.

5 Conclusiones

A continuación, en la Tabla 5.1 y Tabla 5.2 se presenta el resumen de los puntos de monitoreo donde se deberán instalar nuevas PMU, identificando la instalación y fenómeno a monitorear, o tipo de requerimiento, y el correspondiente PDC Local al cual se deberá integrar cada unidad, para instalaciones de transmisión y generación, respectivamente.

Tabla 5.1 Nuevos puntos de monitoreo de la red WAMS para el período 2020-2021, en instalaciones de transmisión.

Zona	Ubicación PMU	Instalación a monitorear	Fenómeno / Requerimiento de monitoreo	Coordinado	Comunicar con PDC
Norte Grande	Paño BT3 en S/E Arica	Lado 66 kV Autotransformador N° 3 de S/E Arica	Isla eléctrica en 66 kV	Engie S.A.	Crucero
	Paño K3 en S/E Nueva Pan de Azúcar	Lado AT Transformador SVC Plus de S/E Nueva Pan de Azúcar ¹	Estabilidad de Tensión	Interchile S.A.	
Norte Chico	Paño K6 en S/E Nueva Pan de Azúcar	Lado AT Transformador SVC Plus de S/E Nueva Pan de Azúcar ¹	Estabilidad de Tensión	Interchile S.A.	Maitencillo
	Paño HT3 en S/E Diego de Almagro	Lado 110 kV Autotransformador N° 3 de S/E Diego de Almagro	Isla eléctrica en 110 kV	Transelec S.A.	
Centro	Paño H3 en S/E Agua Santa	LT Agua – Santa – Miraflores 110 kV C1	Estabilidad de Tensión	Chilquinta Energía S.A.	Alto Jahuel
Sur	Paño en Línea S/E Pichirropulli 500kV	LT Pichirropulli – Nueva Puerto Montt 500kV C1 ²	Monitoreo de STN 500kV	Transelec Holding Rentas Ltda.	
	Paño en Línea S/E Nueva Puerto Montt 500kV	LT Pichirropulli – Nueva Puerto Montt 500kV C2 ²	Monitoreo de STN 500kV	Transelec Holding Rentas Ltda.	Charrúa

¹ Se acepta un solo equipo PMU que permita monitorear la totalidad de reactivos absorbidos o inyectados por el SVC Plus de Nueva Pan de Azúcar.

Tabla 5.2 Nuevos puntos de monitoreo de la red WAMS para el período 2020-2021, en instalaciones de generación

² Línea será inicialmente energizada en 220kV. Se requiere la PMU cuando la línea se encuentre operando en 500kV.

Zona	Ubicación PMU	Instalación a monitorear	Fenómeno / Requerimiento de monitoreo (y usos adicionales)	Coordinado	Comunicar con PDC	
Bornes U2		Unidad 2 Central Angamos	Oscilaciones PSS	Empresa Eléctrica Angamos S.A.		
		Ampliación Finis Terrae Etapa I ¹		Enel Green Power del Sur SpA		
		Parque Fotovoltaico San Pedro		GPG Solar Chile 2017 SpA		
		Parque Solar Fotovoltaico Nuevo Quillagua		Parque Eólico Quillagua SpA	Crucero	
		Santa Isabel Etapa I		TSGF SpA		
		Parque Eólico Tchamma		AR Tchamma SpA		
		Parque Eólico Cerro Tigre		AR Cerro Tigre SpA		
Norte Grande	Lado AT del Transformador	Sol de Lila	Parque generador de alta capacidad	Enel Green Power del Sur SpA		
	Elevador del parque	Planta FV Sol del Desierto Fase I	disponible	Parque Solar Fotovoltaico Sol del Desierto SpA		
		Parque FV Malgarida II		Acciona Energía Chile SpA		
		Parque FV Pampa Tigre		AR Pampa SpA		
		Parque FV Domeyko		Enel Green Power del Sur SpA		
		Parque Eólico Ckani		AR Alto Loa SpA		
		Parque Eólico Calama		Engie Energía Chile S.A.		
		Proyecto FV Coya		PV Coya SpA		
	Lado AT del Transformador Elevador del parque	Río Escondido		AR Escondido SpA		
Norte Chico		Campos del Sol Parque generador de alta capacidad disponible		Enel Green Power del Sur SpA	Maitencillo	
		Valle Escondido		AR Valle Escondido SpA		
Centro	Bornes Generador	Central Campiche	Oscilaciones PSS	AES Gener S.A.	Alto Jahuel	
	Lado AT del	Parque Eólico Malleco – Fase I		Wpd Malleco SpA		
Sur	Transformador Elevador del	Parque Eólico Renaico II	Parque generador de alta capacidad disponible	Enel Green Power del Sur SpA	Charrúa	
	parque	Parque Eólico Malleco – Fase II	,	Wpd Malleco SpA		

Zona	Ubicación PMU	Instalación a monitorear	Fenómeno / Requerimiento de monitoreo (y usos adicionales)	Coordinado	Comunicar con PDC
		Los Olmos		Energía Eólica Los Olmos SpA	
		PE Puelche Sur		AR PUELCHE SUR SpA	

¹ En caso que el punto de interconexión de este proyecto no sea el mismo de Finis Terrae o corresponda a un parque diferente.

Cabe mencionar finalmente que el punto de monitoreo indicado en el Estudio MMF 2018 asociado al proyecto de seccionamiento de la línea Nva. Pan de Azúcar – Polpaico 2x500kV ya no se considera válido en el presente Estudio debido a que la instalación asociada no está considerada en el plan de obras.

6 Anexos

6.1 Especificaciones de equipamiento

Los equipos PMU que se integren al Módulo de Medición Fasorial del Coordinador Eléctrico Nacional deberán cumplir, a lo menos, con las características indicadas en la siguiente tabla.

Requerimiento	Descripción		
Clase de precisión	IEEE C37.118 M-Class		
Tasa de muestreo	50 muestras / segundo		
Interfaz de comunicaciones	A lo menos un puerto Ethernet (10 Base T para IEEE 802.31) para la		
	comunicación con el servidor PDC correspondiente		
Protocolo de sincrofasores	IEEE C37.118-2005 o IEEE C37.118-2011		
Receptor GPS	Integrado en el equipo o suministrado de forma independiente. En		
	caso de sincronización mediante reloj externo, el equipo debe ser		
	sincronizado a través de un puerto IRIG-B. En casos debidamente		
	justificados donde no sea factible la instalación de una antena GPS		
	(por ejemplo, en bornes de unidades generadoras ubicadas en		
	caverna de máquinas), se podría permitir la sincronización		
	mediante un protocolo alternativo, previa autorización expresa del		
	Coordinador.		
Precisión de la sincronización	Dentro de 1 µs de precisión, considerando una base de tiempo		
	sincronizada mediante GPS		
Código de tiempo para la sincronización	IRIG-B no modulada (PTP en casos de indisponibilidad de antena).		
Variables medidas	Frecuencia		
	Tasa de cambio de la frecuencia (ROCOF)		
	 Magnitud y ángulo de la tensión (trifásica) Van, Vbn y Vcn 		
	Magnitud y ángulo de la corriente (trifásica) la, lb e lc		
	Las señales deberán ser obtenidas de los núcleos de medida, con		
	clase de precisión para medida de los transformadores de potencial		
	y de corriente.		
Alimentación	La unidad PMU y los equipos asociados al sistema de		
	comunicaciones deberán estar alimentados desde la red segura de		
	energía eléctrica de la subestación, de modo que ante cualquier		
	falla que ocasione la pérdida de energía de la red convencional, se		
	garantice la continuidad de la medición por un período mínimo de		
	8 horas.		
Señales de tensión desde los TP	Con el propósito de que las medidas de tensión provenientes de los		
	TP de barra sean redundantes, el Coordinado deberá implementar		

Requerimiento	Descripción
	una solución conmutadora que permite integrar ambas señales de
	tensión y que opere bajo la siguiente lógica:
	Ante la no detección de la medida de tensión en una de las barras,
	el dispositivo reciba automáticamente la medida de tensión de una
	segunda barra.
Sistema de comunicaciones	Las empresas Coordinadas deberán habilitar un enlace de
	comunicaciones destinado a la transmisión de datos fasoriales
	entre el punto de medida y concentrador PDC correspondiente.
	El ancho de banda mínimo que deberá encontrarse disponible para
	estos fines es de 120 kbps, no obstante, este valor tendrá que
	evaluarse en función de la cantidad de datos fasoriales que serán
	transmitidos. El cálculo de ancho de banda requerido será de
	responsabilidad del Coordinado y deberá ser presentado al
	Coordinador.
Comunicaciones entre PDC Locales con	Coordinados deberán cumplir con el ancho de banda mínimo
PDC Corporativo	requerido de acuerdo al punto 4.7 de este documento.

6.2 Documentación

Se establece como requerimiento para las empresas coordinadas cuyas instalaciones actualmente participan de la Red WAMS, y de igual forma para los futuros Coordinados que deberán habilitar nuevos puntos de medida, la presentación de toda la documentación técnica relacionada con el proyecto de instalación y puesta en servicio (PES) del equipo PMU y de sus sistemas relacionados como son: sistemas de comunicaciones, alimentación eléctrica u otros.

En particular, los proyectos de instalación e implementación y/o habilitación, requieren la entrega de la siguiente información:

- Plano Layout de disposición en sala y armario.
- Plano de conexión de señales de tensión y corriente, identificando su procedencia (TP y TC, de barra o paño de línea, según corresponda).
- En caso de que la señal de sincronización para el equipo PMU provenga de un equipo externo, deberá entregarse la documentación técnica de éste (marca, modelo y manual del fabricante).
- Planos de la red de comunicaciones, identificando medios de comunicación y enrutamientos internos/externos.
- Diagrama unilineal de la red de alimentación eléctrica (convencional y respaldada) para el equipamiento
 PMU y comunicaciones.

Manuales del fabricante.

Sin perjuicio de lo anterior y de acuerdo con lo establecido en los Art-64 y 65 del ATSM, es responsabilidad de los Coordinados la correcta instalación e implementación de los equipos en los puntos de medida y el cumplimiento de los plazos normativos.

6.3 Instalación y puesta en servicio

Se adjunta a este informe una planilla en formato Excel la cual contiene un *check list* con las pruebas y pasos requeridos para la adecuada implementación del Módulo de Medición Fasorial.

7 Referencias

- [1] Anexo Técnico de Sistema de Monitoreo (ATSM), disponible en https://www.cne.cl/wp-content/uploads/2019/12/SISTEMA-DE-MONITOREO-dic19.pdf, Comisión Nacional de Energía, diciembre de 2019.
- [2] Estudio para la Implementación del Módulo de Medición Fasorial, Coordinador Eléctrico Nacional, disponible en https://www.coordinador.cl/operacion/documentos/plataformas-para-la-operacion/modulo-de-medicion-fasorial/, julio de 2017, julio de 2018 y julio de 2019.
- [3] Estudio de Restricciones en el Sistema de Transmisión (ERST), disponible en <a href="https://www.coordinador.cl/operacion/documentos/estudios-para-la-seguridad-y-calidad-del-servicio/restricciones-en-el-sistema-de-transmision/2019-restricciones-en-el-sistema-de-transmision/Coordinador Eléctrico Nacional, enero de 2020.
- [4] Estudio de Control de Tensión y Requerimientos de Potencia Reactiva (ECTyRPR), disponible en https://www.coordinador.cl/operacion/documentos/estudios-para-la-seguridad-y-calidad-del-servicio/control-de-tension-y-requerimientos-de-potencia-reactiva/ Coordinador Eléctrico Nacional, diciembre de 2019.
- [5] Estudio para Plan de Defensa contra Contingencias Extremas, disponible en https://www.coordinador.cl/operacion/documentos/interconexion/contingencias-extremas-y-planes-de-defensa-zona-norte-del-sen/ Coordinador Eléctrico Nacional, abril de 2019.
- [6] Estudios para Plan de Recuperación de Servicio, disponible en <a href="https://www.coordinador.cl/operacion/documentos/estudios-para-la-seguridad-y-calidad-del-servicio/plan-de-recuperacion-de-servicio/ Coordinador Eléctrico Nacional, marzo de 2020.
- [7] Catastro de Nuevos Proyectos de Generación y Transmisión disponible en https://www.cne.cl/wp-content/uploads/2020/06/Res-Ex-CNE-N%C2%B0226.pdf Comisión Nacional de Energía, junio de 2020.
- [8] Estudio de Sintonización de Estabilizadores de Potencia (PSS), disponible en https://www.coordinador.cl/operacion/documentos/estudios-para-la-seguridad-y-calidad-del-servicio/sintonizacion-de-estabilizadores-de-potencia-pss/, febrero de 2020.
- [9] Estudio de Control de Frecuencia y Determinación de Reservas, disponible en https://www.coordinador.cl/operacion/documentos/estudios-para-la-seguridad-y-calidad-del-servicio/control-de-frecuencia-y-determinacion-de-reservas/ Coordinador Eléctrico Nacional, junio de 2020.