

Doc.-No.: CHL-3.XM-GRID-109-B2

Fecha: 12-03-2020





Doc.: CHL-3.XM-GRID-109-B2 Page: 2 of 21

## Historial de versiones

| Versión | Descripción    | Preparó     | Revisó      | Aprobó      | Fecha      |
|---------|----------------|-------------|-------------|-------------|------------|
| А       | Coord. Interna | D.Herrera   | D.Herrera   |             | 23.05.2019 |
| B1      | Para revisión  | D.Herrera   | S.Fautrat   | J.Jaramillo | 19.07.2019 |
| B2      | Publicación    | D.Wendering | D.Wendering | J.Rathje    | 12.03.2019 |

Cambios están marcados en gris dentro del documento.



Doc.: CHL-3.XM-GRID-109-B2 Page: 3 of 21

## Índice

| 1     | Introducción y Objetivos                                | 4  |
|-------|---------------------------------------------------------|----|
| 2     | Antecedentes técnicos de diseño                         | 5  |
| 2.1   | Subestación 220/33 kV Sarco                             | 5  |
| 2.2   | Transformador de Poder                                  | 7  |
| 2.3   | Aerogenerador Senvion 3.4M114                           | 7  |
| 2.3.1 | Transformador de Unidad                                 | 9  |
| 2.3.2 | Curva de Potencia                                       | 10 |
| 2.4   | Red de Media Tensión                                    | 12 |
| 2.5   | Servicios Auxiliares de la Subestación                  | 14 |
| 3     | Determinación de la Potencia Máxima Parque Eólico Sarco | 15 |
| 3.1   | Potencia Máxima Aerogenerador 3.4M114                   | 15 |
| 3.2   | Metodología Utilizada                                   | 18 |
| 4     | Conclusiones                                            | 20 |
| 5     | Referencias y Anexos                                    | 21 |



Doc.: CHL-3.XM-GRID-109-B2 Page: 4 of 21

## 1 Introducción y Objetivos

El objetivo de este informe es determinar la Potencia Máxima del Parque Eólico Sarco de acuerdo al Anexo Técnico Pruebas de Potencia Máxima en Unidades Generadoras y sus documentos asociados [/1//2//3/].

El valor de potencia máxima será obtenido en función de registros de operación de las unidades generadoras, consumos auxiliares, datos técnicos de las instalaciones relacionadas y datos de recurso primario.

En los puntos siguientes se describirán los registros de operación, supuestos utilizados, metodologías, alcances de la aplicación de estas metodologías y conclusiones bajo los cuales se estableció el valor de Potencia Máxima.



Doc.: CHL-3.XM-GRID-109-B2 Page: 5 of 21

#### 2 Antecedentes técnicos de diseño

#### 2.1 Subestación 220/33 kV Sarco

La subestación del Parque Eólico Sarco se compone de los siguientes elementos principales: Instalaciones de 220kV:

- Paño de Línea, J1
- Transformador de poder 220/33kV conexión YNd1, potencia de 120/170 MVA ONAN/ONAF

#### Instalaciones de 33kV:

- Barra principal de 33kV de dos secciones sin acoplamiento:
  - Barra de 33kV sección 1 con siete celdas: Una destinada a servicios auxiliares, cinco destinadas a circuitos de aerogeneradores y una celda de salida al transformador de poder
  - Barra de 33kV sección 2 con seis celdas: Cinco para circuitos de aerogeneradores y una celda de salida al transformador de poder
- Transformador de puesta a tierra de 750 kVA, conexión Zig-Zag
- Servicios Auxiliares: Alimentados desde transformador auxiliar de 150kVA 33/0,4kV, conexión DYn11

El diagrama unilineal de la subestación se muestra a continuación [/4/]:

Doc.: CHL-3.XM-GRID-109-B2 Page: 6 of 21

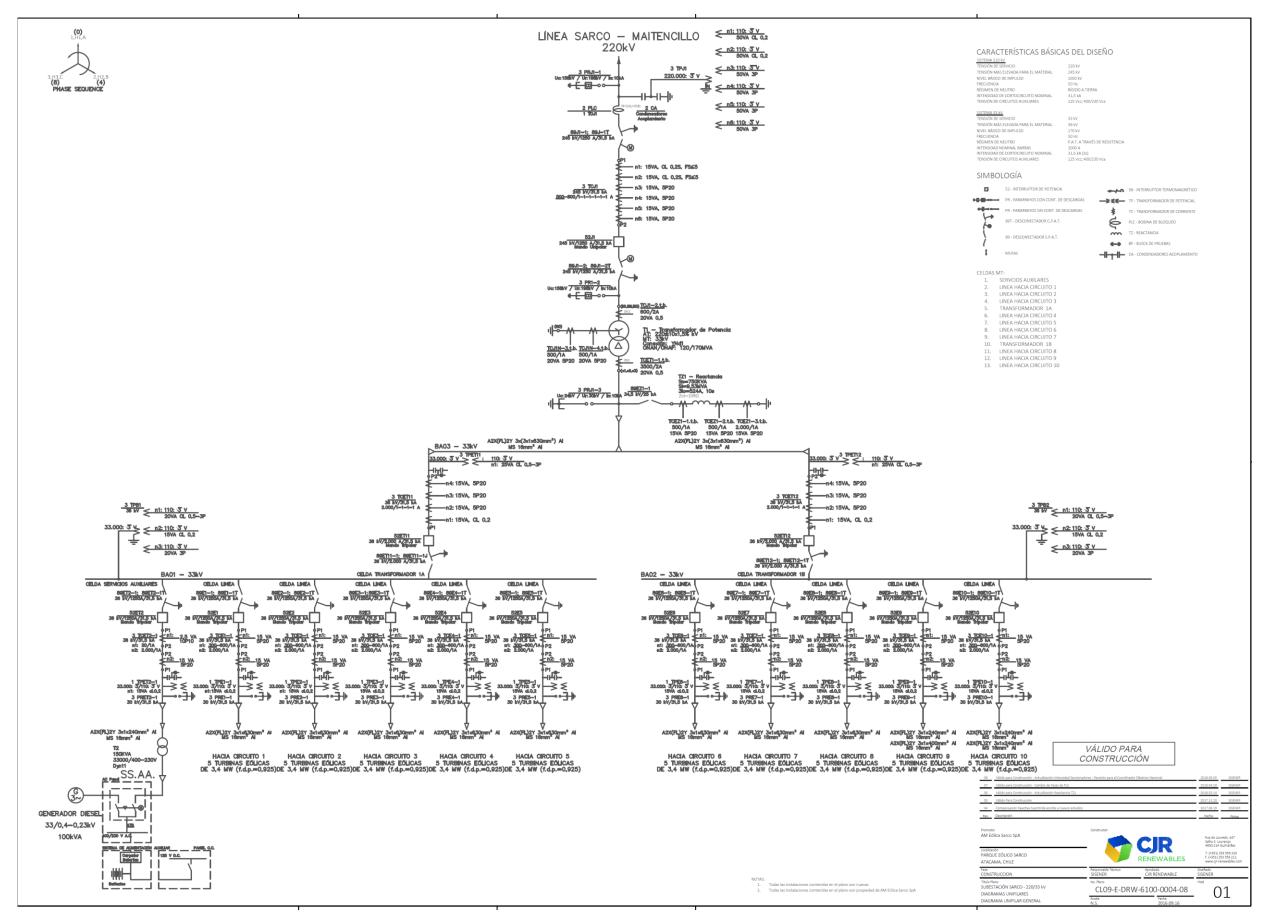



Figura 1 - Diagrama Unilineal Subestación Sarco

Doc.: CHL-3.XM-GRID-109-B2 Page: 7 of 21

#### 2.2 Transformador de Poder

Se considerarán los datos de placa del transformador para considerar las pérdidas de potencia activa asociadas:

| Parámetro                            | Transformador ABB |
|--------------------------------------|-------------------|
| Potencia nominal [MVA]               | 120/170           |
| Régimen de refrigeración             | ONAN/ONAF         |
| Voltaje nominal [kV]                 | 220/33            |
| Cambiador de tap (lado AT)           | ±10x1,5 %         |
| Corriente nominal [A]                | 446,13/2974,2     |
| Conexión                             | YNd1              |
| Impedancia de secuencia positiva [%] | 12,87             |
| Impedancia de secuencia cero [%]     | 12,35             |
| Pérdidas en carga [kW]               | 461,16            |
| Corriente de vacío [%]               | 0,06516           |
| Pérdidas en vacío [kW]               | 59,2              |

Tabla 1 - Parámetros del transformador de poder - SE Sarco

Los datos de placa y pruebas se detallan en anexo [/5/].

#### 2.3 Aerogenerador Senvion 3.4M114

El Parque Eólico Sarco está compuesto por 50 aerogeneradores Senvion modelo 3.4M114, de 3400 [kW] de potencia activa nominal, totalizando una potencia total de 170 [MW].

Todos los aerogeneradores del proyecto son de idénticas características, siendo de tecnología DFIG con un transformador de unidad de tres devanados con tensiones de 33/0,69/0,4 [kV], distribuidos en 10 circuitos.

Las características principales se indican a continuación:

| Parámetro           | Valor                        |
|---------------------|------------------------------|
| Fabricante          | Senvion                      |
| Modelo              | 3.4M114                      |
| Diámetro de aspas   | 114[m]                       |
| Altura de buje      | 119 [m]                      |
| Tensión nominal     | 33.000/950/660 [V]           |
| Potencia Nominal    | 3400 [kVA] (en Baja Tensión) |
| 1 otoriola reominal | 3370 [kW] (en Media Tensión) |

Tabla 2 - Resumen características aerogeneradores del Parque Eólico

El diagrama unilineal del aerogenerador es el siguiente [/6/]:

Doc.: CHL-3.XM-GRID-109-B2 Page: 8 of 21

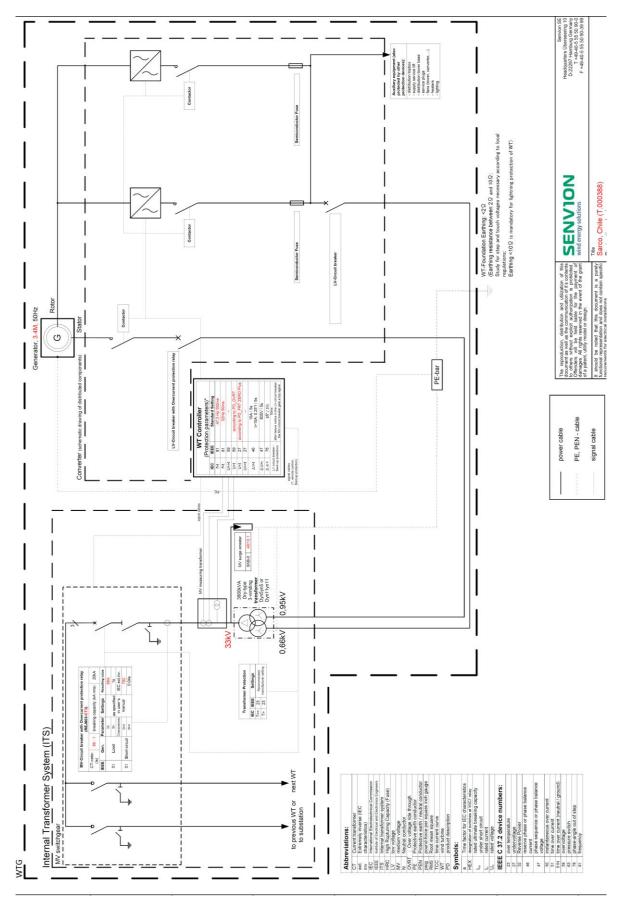



Figura 2 - Diagrama Unilineal Aerogenerador 3.4M114La medición de potencia se realiza en el lado de media tensión del aerogenerador, en la salida del transformador de unidad. La potencia nominal garantizada es de 3370 [kVA] en los terminales de media tensión de la unidad, la que considera las pérdidas en el transformador.



Doc.: CHL-3.XM-GRID-109-B2 Page: 9 of 21

#### 2.3.1 Transformador de Unidad

Cada aerogenerador cuenta con un transformador de unidad de tres devanados, con los siguientes características [/4/], [/5/]:

| Parámetro                            | Transformador WTG 3.4M114 |
|--------------------------------------|---------------------------|
| Potencia nominal [kVA]               | 3300/3800                 |
| Régimen de refrigeración             | ONAN/ONAF                 |
| Voltaje nominal [kV]                 | 33/0,95/0,66              |
| Cambiador de tap (lado AT)           | ±2x2.5%                   |
| Corriente nominal [A]                | 66,5/2022,6/651,1         |
| Conexión                             | Dyn5yn5                   |
| Impedancia de secuencia positiva [%] | 7,92                      |
| Impedancia de secuencia cero [%]     | 7,92                      |
| Pérdidas en carga [kW]               | 25,282                    |
| Corriente de vacío [%]               | 0,159                     |
| Pérdidas en vacío [kW]               | 5,155                     |

Tabla 3 - Parámetros del transformador de unidad 3.4M114

Doc.: CHL-3.XM-GRID-109-B2 Page: 10 of 21

#### 2.3.2 Curva de Potencia

La curva de potencia del aerogenerador entrega valores garantizados de generación (en terminales MT) en función de la densidad del aire [/9/]:

Power curve applicable at the medium-voltage side of the transformer (includes transformer losses)

| Wind speed                 | Electrical power P [kW] |               |               |               |               |               |               |               |               |               |               |
|----------------------------|-------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| (at hub height)<br>v [m/s] | 1.225<br>kg/m³          | 1.00<br>kg/m³ | 1.03<br>kg/m³ | 1.06<br>kg/m³ | 1.09<br>kg/m³ | 1.12<br>kg/m³ | 1.15<br>kg/m³ | 1.18<br>kg/m³ | 1.21<br>kg/m³ | 1.24<br>kg/m³ | 1.27<br>kg/m³ |
| 3                          | 14                      | 0             | 2             | 4             | 6             | 7             | 9             | 11            | 13            | 15            | 17            |
| 4                          | 132                     | 96            | 101           | 106           | 110           | 115           | 120           | 125           | 130           | 135           | 140           |
| 5                          | 319                     | 247           | 257           | 266           | 276           | 286           | 295           | 305           | 314           | 324           | 333           |
| 6                          | 593                     | 468           | 484           | 501           | 518           | 534           | 551           | 568           | 585           | 602           | 618           |
| 7                          | 979                     | 781           | 807           | 833           | 860           | 887           | 914           | 940           | 966           | 993           | 1019          |
| 8                          | 1491                    | 1200          | 1239          | 1278          | 1317          | 1356          | 1395          | 1433          | 1472          | 1510          | 1548          |
| 9                          | 2090                    | 1703          | 1755          | 1807          | 1858          | 1910          | 1961          | 2013          | 2064          | 2116          | 2167          |
| 10                         | 2701                    | 2201          | 2267          | 2334          | 2401          | 2469          | 2536          | 2602          | 2668          | 2733          | 2795          |
| 11                         | 3182                    | 2671          | 2751          | 2832          | 2907          | 2979          | 3045          | 3104          | 3158          | 3204          | 3243          |
| 12                         | 3370                    | 3071          | 3145          | 3205          | 3254          | 3293          | 3323          | 3345          | 3362          | 3370          | 3370          |
| 13                         | 3370                    | 3310          | 3340          | 3363          | 3370          | 3370          | 3370          | 3370          | 3370          | 3370          | 3370          |
| 14 - 22                    | 3370                    | 3370          | 3370          | 3370          | 3370          | 3370          | 3370          | 3370          | 3370          | 3370          | 3370          |

Tabla 4 - Potencia activa en función de la velocidad y densidad de viento. 3.4M114

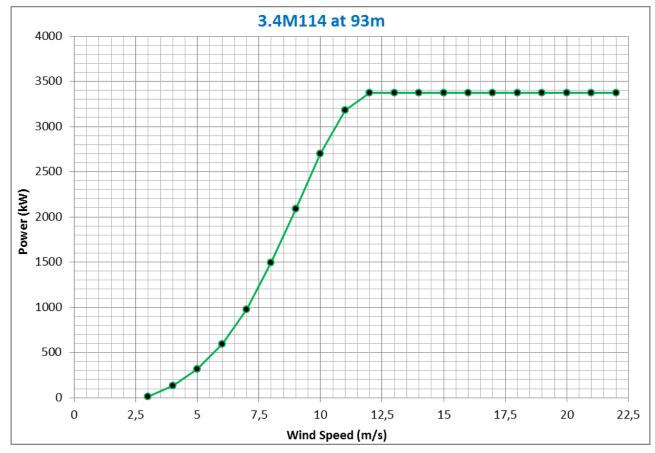



Figura 3- Curva de Potencia para Aerogenerador 3.4M114 - PE Sarco



Doc.: CHL-3.XM-GRID-109-B2 Page: 11 of 21



Doc.: CHL-3.XM-GRID-109-B2 Page: 12 of 21

Unidades Generadoras

#### 2.4 Red de Media Tensión

Los aerogeneradores se distribuyen en una red de 33kV compuesta de 10 circuitos como se ilustra en Figura 4 y Figura 5 [/13/]:

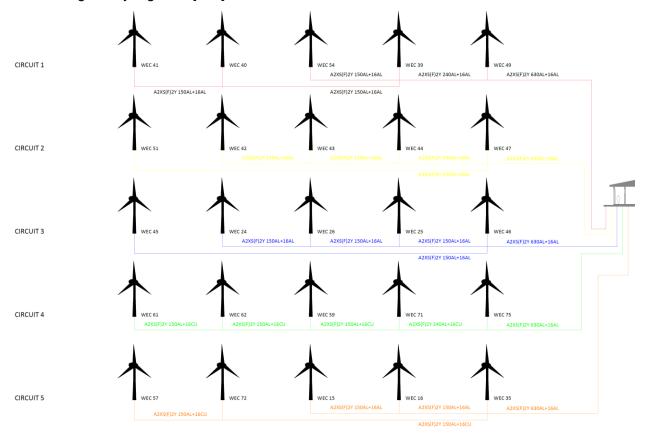



Figura 4: Diagrama Unilineal PE Sarco - Circuitos 1 al 5



Doc.: CHL-3.XM-GRID-109-B2 Page: 13 of 21

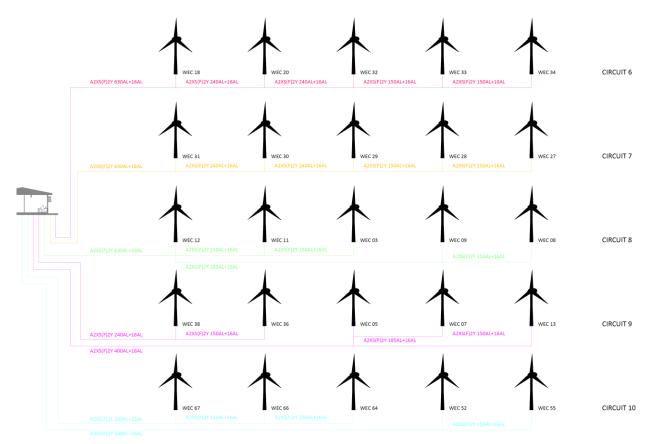



Figura 5: Diagrama Unilineal PE Sarco - Circuitos 6 al 10

A partir del modelo del parque eólico utilizado en los estudios de impacto sistémico [/14/] se actualizaron los datos de potencia máxima y pérdidas, se incluyeron los consumos de SSAA y se ejecutó un flujo de potencia en condiciones de máxima generación para determinar las pérdidas en la red media tensión [/16/].

El detalle de los conductores utilizados en cada circuito se encuentra en Anexo [/14/], mientras que el set de conductores utilizados se resume en Tabla 5:

| Líneas                      | R1 [Ω/km] | X1 [Ω/km] | R0 [Ω/km] | X0 [Ω/km] | B1 [uS/km] | B0 [uS/km] |
|-----------------------------|-----------|-----------|-----------|-----------|------------|------------|
| 3x150 mm2 A2X(FL)2Y 19/33kV | 0,1841    | 0,1181    | 1,1069    | 0,7010    | 55,2294    | 55,2294    |
| 3x185 mm2 A2X(FL)2Y 19/33kV | 0,1412    | 0,1133    | 1,0408    | 0,6481    | 60,6195    | 60,6195    |
| 3x240 mm2 A2X(FL)2Y 19/33kV | 0,1130    | 0,1096    | 0,9904    | 0,6031    | 65,7016    | 65,7016    |
| 3x400 mm2 A2X(FL)2Y 19/33kV | 0,0670    | 0,1017    | 0,8810    | 0,4961    | 80,2704    | 80,2704    |
| 3x500 mm2 A2X(FL)2Y 19/33kV | 0,0513    | 0,0957    | 0,8282    | 0,4417    | 89,4677    | 89,4677    |
| 3x630 mm2 A2X(FL)2Y 19/33kV | 0,0444    | 0,0957    | 0,7976    | 0,4125    | 95,2288    | 95,2288    |

Tabla 5 - Parámetros conductores en Red MT PE Sarco

Las pérdidas en la red colectora se determinaron en 2000,0 [kW]

Doc.: CHL-3.XM-GRID-109-B2 Page: 14 of 21

#### 2.5 Servicios Auxiliares de la Subestación

Los servicios auxiliares [/17/] se alimentan desde un transformador de 150kVA 33/0,4 kV. El consumo máximo se estimó, en base a criterios conservativos y estimaciones de diseño, en un 80% de la capacidad máxima, es decir 120 [kVA].

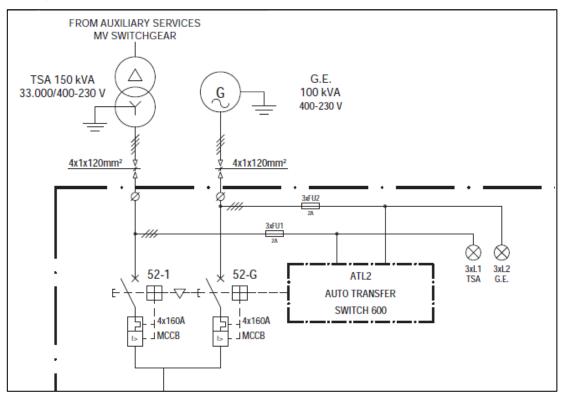



Figura 6 - SSAA Subestación 220/33kV PE Sarco



Doc.: CHL-3.XM-GRID-109-B2 Page: 15 of 21

## 3 Determinación de la Potencia Máxima Parque Eólico Sarco

#### 3.1 Potencia Máxima Aerogenerador 3.4M114

Si bien la potencia nominal garantizada es de 3370 [kVA] en terminales de salida en media tensión, el aerogenerador es capaz de entregar una potencia máxima levemente mayor y que varía en función del tiempo de muestra.

Para determinar la potencia máxima efectiva de la unidad se considerarán los registros de las pruebas realizadas a cada aerogenerador y que en anexos se encuentran los registros para dos turbinas [/10/], [/11/]. Estas pruebas consideran la operación continua por cinco días (120 horas). A continuación se ilustra el gráfico de generación v/s viento de una unidad, en valores promedios de 10 minutos:

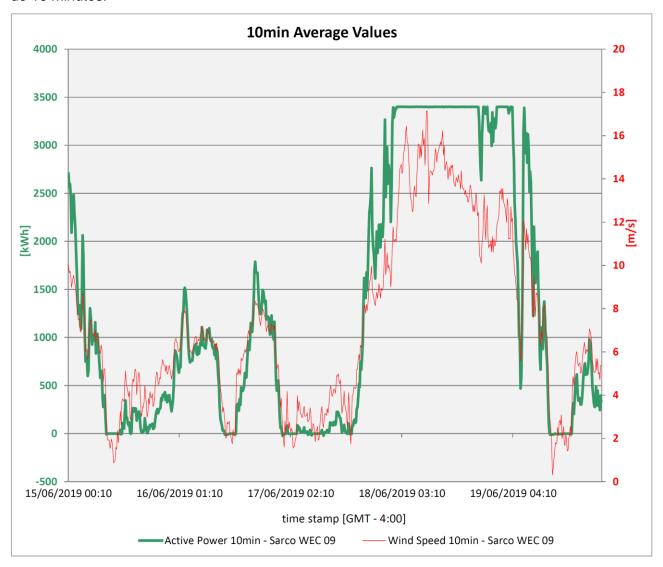



Figura 7 - Generación y viento promedio de 10 [min] WTG 09 Sarco

Para el caso analizado, la potencia máxima se alcanza durante varias horas del día 18/06/19. Un extracto de las mediciones se indica a continuación:



Doc.: CHL-3.XM-GRID-109-B2 Page: 16 of 21

|                  |         | Actual   | Actual   | Actual   | Actual  | Actual  | Actual  |
|------------------|---------|----------|----------|----------|---------|---------|---------|
| Time stamp       | Active  | Voltage  | Voltage  | Voltage  | Current | Current | Current |
| [GMT-04:00]      | Power   | L1-N     | L2-N     | L3-N     | 11      | 12      | 13      |
| [0111-04.00]     | [kW]    |          |          |          |         |         |         |
| 1010010010 00 10 | 0.400.7 | [V]      | [V]      | [V]      | [A]     | [A]     | [A]     |
| 18/06/2019 08:40 | 3.400,7 | 19.225,0 | 19.351,8 | 19.207,4 | 59,1    | 59,5    | 58,8    |
| 18/06/2019 08:50 | 3.400,1 | 19.278,8 | 19.403,6 | 19.259,7 | 58,9    | 59,4    | 58,6    |
| 18/06/2019 09:00 | 3.396,0 | 19.311,8 | 19.440,2 | 19.295,0 | 58,7    | 59,2    | 58,4    |
| 18/06/2019 09:10 | 3.398,9 | 19.342,7 | 19.477,3 | 19.322,5 | 58,7    | 59,2    | 58,4    |
| 18/06/2019 09:20 | 3.400,7 | 19.319,0 | 19.452,4 | 19.298,3 | 58,8    | 59,3    | 58,5    |
| 18/06/2019 09:30 | 3.399,5 | 19.328,7 | 19.464,5 | 19.309,1 | 58,8    | 59,3    | 58,5    |
| 18/06/2019 09:40 | 3.400,2 | 19.358,3 | 19.495,0 | 19.336,6 | 58,7    | 59,2    | 58,4    |
| 18/06/2019 09:50 | 3.397,5 | 19.371,7 | 19.506,6 | 19.348,9 | 58,6    | 59,1    | 58,3    |
| 18/06/2019 10:00 | 3.398,9 | 19.398,0 | 19.528,1 | 19.372,4 | 58,6    | 59,1    | 58,3    |
| 18/06/2019 10:10 | 3.400,8 | 19.384,1 | 19.516,8 | 19.358,2 | 58,7    | 59,2    | 58,3    |
| 18/06/2019 10:20 | 3.398,7 | 19.370,7 | 19.506,7 | 19.344,7 | 58,7    | 59,2    | 58,3    |
| 18/06/2019 10:30 | 3.402,4 | 19.388,0 | 19.519,2 | 19.363,6 | 58,7    | 59,2    | 58,4    |
| 18/06/2019 10:40 | 3.399,4 | 19.406,1 | 19.537,2 | 19.384,8 | 58,6    | 59,1    | 58,3    |
| 18/06/2019 10:50 | 3.399,9 | 19.359,1 | 19.495,3 | 19.335,4 | 58,7    | 59,2    | 58,4    |
| 18/06/2019 11:00 | 3.399,8 | 19.329,2 | 19.469,8 | 19.307,3 | 58,8    | 59,3    | 58,5    |
| 18/06/2019 11:10 | 3.400,7 | 19.302,5 | 19.441,5 | 19.279,2 | 58,9    | 59,4    | 58,6    |
| 18/06/2019 11:20 | 3.400,3 | 19.268,8 | 19.404,7 | 19.240,5 | 59,0    | 59,5    | 58,7    |
| 18/06/2019 11:30 | 3.400,1 | 19.263,3 | 19.398,8 | 19.234,5 | 59,0    | 59,5    | 58,7    |
| 18/06/2019 11:40 | 3.400,6 | 19.382,0 | 19.522,1 | 19.358,8 | 58,6    | 59,2    | 58,3    |
| 18/06/2019 11:50 | 3.400,4 | 19.527,5 | 19.668,9 | 19.506,4 | 58,2    | 58,7    | 57,9    |
| 18/06/2019 12:00 | 3.399,2 | 19.564,8 | 19.705,6 | 19.545,4 | 58,0    | 58,5    | 57,8    |
| 18/06/2019 12:10 | 3.400,4 | 19.588,8 | 19.727,6 | 19.572,3 | 58,0    | 58,5    | 57,7    |
| 18/06/2019 12:20 | 3.401,1 | 19.627,5 | 19.764,0 | 19.610,6 | 57,9    | 58,4    | 57,6    |
| 18/06/2019 12:30 | 3.396,1 | 19.654,6 | 19.787,1 | 19.634,9 | 57,8    | 58,3    | 57,5    |
| 18/06/2019 12:40 | 3.400,8 | 19.674,1 | 19.807,0 | 19.659,3 | 57,8    | 58,3    | 57,5    |
| 18/06/2019 12:50 | 3.399,2 | 19.685,9 | 19.823,5 | 19.674,0 | 57,7    | 58,2    | 57,4    |
| 18/06/2019 13:00 | 3.399,2 | 19.615,3 | 19.751,1 | 19.600,2 | 57,9    | 58,4    | 57,6    |
| 18/06/2019 13:10 | 3.401,3 | 19.578,4 | 19.717,7 | 19.565,3 | 58,1    | 58,6    | 57,8    |
| 18/06/2019 13:20 | 3.398,9 | 19.578,0 | 19.718,4 | 19.566,1 | 58,0    | 58,5    | 57,7    |
| 18/06/2019 13:30 | 3.399,7 | 19.564,9 | 19.704,8 | 19.552,0 | 58,1    | 58,6    | 57,8    |
| 18/06/2019 13:40 | 3.400,9 | 19.555,2 | 19.695,8 | 19.540,8 | 58,1    | 58,6    | 57,8    |
| 18/06/2019 13:50 | 3.399,6 | 19.562,0 | 19.701,8 | 19.549,6 | 58,1    | 58,6    | 57,8    |
| 18/06/2019 14:00 | 3.400,0 | 19.560,8 | 19.700,3 | 19.546,6 | 58,1    | 58,6    | 57,8    |
| 18/06/2019 14:10 | 3.400,9 | 19.520,0 | 19.665,9 | 19.504,8 | 58,2    | 58,7    | 57,9    |
| 18/06/2019 14:20 | 3.400,1 | 19.506,7 | 19.650,4 | 19.491,8 | 58,3    | 58,8    | 58,0    |
| 18/06/2019 14:30 | 3.399,0 | 19.508,1 | 19.654,6 | 19.495,4 | 58,2    | 58,7    | 57,9    |
| 18/06/2019 14:40 | 3.399,6 | 19.505,0 | 19.652,6 | 19.492,9 | 58,2    | 58,8    | 57,9    |
| 18/06/2019 14:50 | 3.399,8 | 19.502,2 | 19.646,3 | 19.487,4 | 58,2    | 58,8    | 58,0    |
| 18/06/2019 15:00 | 3.400,4 | 19.538,2 | 19.683,0 | 19.523,6 | 58,1    | 58,6    | 57,8    |
| 18/06/2019 15:10 | 3.399,1 | 19.560,2 | 19.699,6 | 19.544,5 | 58,0    | 58,5    | 57,8    |
| 18/06/2019 15:20 | 3.400,6 | 19.547,8 | 19.688,7 | 19.529,4 | 58,1    | 58,6    | 57,8    |
| 18/06/2019 15:30 | 3.398,7 | 19.529,3 | 19.675,7 | 19.513,1 | 58,1    | 58,7    | 57,8    |
| 18/06/2019 15:40 | 3.400,6 | 19.511,8 | 19.658,5 | 19.499,3 | 58,2    | 58,7    | 57,9    |
| 18/06/2019 15:50 | 3.399,9 | 19.468,1 | 19.606,1 | 19.452,4 | 58,3    | 58,9    | 58,1    |
| 18/06/2019 16:00 | 3.399,1 | 19.442,7 | 19.577,9 | 19.427,0 | 58,4    | 58,9    | 58,1    |
| 18/06/2019 16:10 | 3.399,6 | 19.467,4 | 19.603,1 | 19.456,0 | 58,3    | 58,8    | 58,1    |
| 18/06/2019 16:20 | 3.400,6 | 19.498,3 | 19.632,3 | 19.489,0 | 58,3    | 58,8    | 58,0    |
| 18/06/2019 16:30 | 3.400,0 | 19.517,7 | 19.658,2 | 19.511,0 | 58,2    | 58,7    | 57,9    |
| 18/06/2019 16:40 | 3.399,4 | 19.546,6 | 19.682,7 | 19.540,1 | 58,1    | 58,5    | 57,8    |
| 18/06/2019 16:50 | 3.400,2 | 19.640,4 | 19.768,7 | 19.639,8 | 57,8    | 58,3    | 57,6    |
| 18/06/2019 17:00 | 3.400,4 | 19.627,2 | 19.753,1 | 19.629,4 | 57,9    | 58,3    | 57,7    |
| 18/06/2019 17:10 | 3.401,0 | 19.568,1 | 19.697,9 | 19.576,3 | 58,0    | 58,5    | 57,8    |
| 18/06/2019 17:20 | 3.398,4 | 19.617,9 | 19.739,3 | 19.631,5 | 57,8    | 58,2    | 57,7    |
| 18/06/2019 17:30 | 3.400,2 | 19.643,6 | 19.766,4 | 19.664,8 | 57,8    | 58,2    | 57,6    |

Tabla 6 - Valores de potencia activa registrados en WTG 09 PE Sarco



Doc.: CHL-3.XM-GRID-109-B2 Page: 17 of 21

Los valores máximos de 10 minutos oscilan entre 3400 y 3398[kW]. Por otra parte, los valores máximos garantizados [/12/] corresponden a 3399 [kW] a 10 minutos, por lo que se definirá este valor como potencia activa máxima para la unidad, y al ser todas las unidades idénticas, este valor aplica para las 50 unidades del Parque Eólico Sarco.

Measurement and assessment of power quality characteristics of the grid connected WEC of the type Senvion 3.4M114 according to parts of the IEC 61400-21 Edition 2.0

| Type:         | Senvion 3.4M114 | Manufacture's                        | Manufacture's specification:   |  |  |  |
|---------------|-----------------|--------------------------------------|--------------------------------|--|--|--|
| Manufacturer: | Senvion SE      | Generic type of installation:        | Pitch, double fed asynchronous |  |  |  |
|               | Serivion SE     | Rated frequency:                     | 50 Hz                          |  |  |  |
|               | Überseering 10  | Rated Power P <sub>n</sub> :         | 3370 kW                        |  |  |  |
|               | D-22297 Hamburg | Rated wind speed v <sub>n</sub> :    | 13.5 m/s                       |  |  |  |
|               |                 | Rated apparent power S <sub>n:</sub> | 3370 k∨A                       |  |  |  |
|               |                 | Rated current In (*):                | 97 A                           |  |  |  |
|               |                 | Rated voltage U <sub>n</sub> (*):    | 20000 ∨                        |  |  |  |

<sup>(\*)</sup> The values apply for the standard power factor cos φ= 1. The value of the rated voltage may vary within a range from 10 kV to 36 kV. The rated current depends on the rated voltage.

#### Maximum measured power (\*\*)

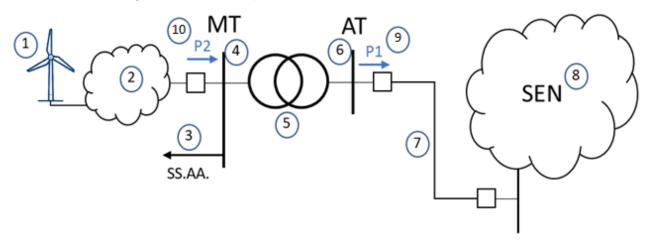
| P <sub>600</sub> [kW]      | 3399,00 | P <sub>60</sub> [kW]     | P <sub>60</sub> [kW] 3414,00 |                            | 3595,00 |
|----------------------------|---------|--------------------------|------------------------------|----------------------------|---------|
| $p_{600} = P_{600}/P_{nG}$ | 1,01    | $p_{60} = P_{60}/P_{nG}$ | 1,01                         | $p_{0.2} = P_{0.2}/P_{nG}$ | 1,07    |

<sup>(\*\*)</sup>  $\vee$  alues apply for the standard pow er factor  $\cos \varphi = 1$ .

Tabla 7 - Valores Máximos Garantizados en Aerogenerador 3.4M114

En conclusión, el valor máximo de potencia activa de cada aerogenerador, medido en sus terminales de media tensión es de 3.399 [kW].

La potencia activa máxima que todos los aerogeneradores pueden entregar, considerando las pérdidas del transformador interno, es de 50 x 3.399[kW]= 169,95 [MW].




Doc.: CHL-3.XM-GRID-109-B2 Page: 18 of 21

#### 3.2 Metodología Utilizada

Se utilizarán los registros operacionales para determinar la potencia máxima histórica de cada unidad generadora, luego se utilizará la metodología descrita en el documento del CEN "Puesta en Servicio de Unidades Generadoras – Aplicación de Anexos Técnicos"

Se considerará el siguiente sistema equivalente:



En donde los componentes se identifican como:

- 1. Parque Eólico equivalente: Corresponderá al aporte máximo histórico de cada unidad de aerogenerador que compone el parque.
- 2. Pérdidas en sistema colector del parque: Corresponde a las pérdidas del sistema colector del parque eólico principalmente en cables de baja y media tensión.
- 3. Servicios Auxiliares (SS.AA.) de la central.
- 4. Barra de media tensión (MT): Corresponde a la tensión en el lado de baja tensión del transformador de poder de la central.
- 5. Transformador de Poder: Equipo elevador presente en la subestación de salida del parque ERNC.
- 6. Barra de alta tensión (AT): Corresponde a la tensión en el lado de alta tensión del transformador de poder de la central.
- 7. Línea dedicada de la central: Línea de alta tensión que vincula el parque ERNC con el sistema eléctrico.
- 8. Sistema Eléctrico Nacional (SEN).
- 9. P1: Potencia inyectada por el parque ERNC en la barra de alta tensión de su subestación de salida
- P2: Potencia inyectada por el parque ERNC en la barra de media tensión de su subestación de salida.



Doc.: CHL-3.XM-GRID-109-B2 Page: 19 of 21

Posteriormente se definen las siguientes variables:

- a) P1: Potencia activa inyectada en la barra de alta tensión (AT) de la central [MW].
- b) P2: Potencia activa inyectada en la barra de media tensión (MT) de la central [MW].
- c) Ptrafo: Pérdidas activas en el transformador de poder de la central [kW].
- d) SS.AA.: Servicios Auxiliares de la central [kW].
- e) Pcolector: Pérdidas en el sistema colector del parque ERNC [kW].

Finalmente, la Potencia Máxima Activa Bruta (PMax bruta) de la central quedará definida por: PMax bruta=P1+Ptrafo+SS.AA.+Pcolector ó PMax bruta=P2+Pcolector

Y la Potencia Máxima Activa Neta (PMax neta) de la central quedará definida por: PMax neta=P1 +oPMax neta=P2-SS.AA.- Ptrafo

| Máxima Potencia Aerogeneradores                           | 169,95 | [MW] |
|-----------------------------------------------------------|--------|------|
| Pcolector: Pérdidas en el sistema colector                | 2000   | [kW] |
| SS.AA: Servicios Auxiliares de la central                 | 120    | [kW] |
| P2: Potencia Activa inyectada la barra MT de la central   | 167,95 | [MW] |
| Ptrafo: Pérdidas activas en Trans. de Poder de la central | 520,37 | [kW] |
| P1: Potencia Activa inyectada la barra AT de la central   | 167,31 | [MW] |
|                                                           |        |      |
| PMax bruta: Potencia Activa Máxima Bruta                  | 169,95 | [MW] |
| PMax neta: Potencia Activa Máxima Neta                    | 167,31 | [MW] |
|                                                           |        |      |



Doc.: CHL-3.XM-GRID-109-B2 Page: 20 of 21

#### 4 Conclusiones

En base a los resultados obtenidos en las pruebas realizadas correspondientes al "ANEXO TÉCNICO: Pruebas de Potencia Máxima en Unidades Generadoras", los registros de operación de los aerogeneradores 3.4M114, datos técnicos de la subestación y equipos asociados, se establecen las siguientes conclusiones respecto a la potencia máxima del Parque Eólico Sarco:

- La potencia máxima activa bruta es de 169,95 [MVA]
- La potencia máxima activa neta que es capaz de inyectar el parque eólico Sarco es de 167,31[MVA]



Doc.: CHL-3.XM-GRID-109-B2 Page: 21 of 21

# 5 Referencias y Anexos

|      | Descripción                                                                      | Documento                                                                                                          | Ver. | Fecha        |
|------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------|--------------|
| /1/  | Norma Técnica de Seguridad y<br>Calidad De Servicio                              | https://www.cne.cl/wp-content/uploads/2015/06/NTSyCS_May18.pdf                                                     |      | Mayo<br>2018 |
| /2/  | Anexo Técnico Pruebas de<br>Potencia Máxima en Unidades<br>Generadoras           | https://www.cne.cl/wp-content/uploads/2015/06/Anexo-NT-Pruebas-de-Potencia-M%C3%A1xima-en-Unidades-Generadoras.pdf |      |              |
| /3/  | Puesta en Servicio de Unidades<br>Generadoras – Aplicación de<br>Anexos Técnicos | https://www.coordinador.cl/wp-content/uploads/2019/03/PES-de-UUGG-Aplicaci%C3%B3n-de-Anexos-T%C3%A9cnicos.pdf      | 1    | 14/02/19     |
| /4/  | Diagrama Unilineal SE Sarco                                                      | CL09-E-DRW-6100-0004-08                                                                                            | 01   | 05/06/18     |
| /5/  | Datos Transformador de Poder                                                     | Datos Transformador de Poder - PE Sarco                                                                            |      |              |
| /6/  | D.Unilineal Aerogenerador 3.4M114                                                | CL_Sarco_GCE_ProtD_3xM_50Hz                                                                                        | 01   | 31/08/16     |
| /7/  | Descripción del sistema de transformación interna WTG 3.XM                       | PD-3.1-EC.TS.01-A-E-EN-Internal Transformer System [3.XM_50Hz]                                                     |      | 31/03/15     |
| /8/  | Certificado pruebas<br>transformador de unidad                                   | Test Certificate - 3 Phase cast resin transformer                                                                  |      | 6/09/16      |
| /9/  | Curva de Potencia 3.4M114                                                        | GI-3.2-WT.PC-02.A-A-EN Power Curve at Different Air Densities [3.4M114]                                            |      | 29/08/14     |
| /10/ | Informe de pruebas – Reliability<br>Run Report WTG09                             | RRR_DataProcess_Sarco WEC 09                                                                                       |      | 21/06/19     |
| /11/ | Informe de pruebas – Reliability<br>Run Report WTG64                             | RRR_DataProcess_Sarco WEC 64                                                                                       |      | 21/06/19     |
| /12/ | Propiedades Eléctricas según<br>IEC61400-21 Ed.2 para<br>3.4M114                 | D-3.2-GP.EL.06-C-A Electrical properties IEC [3.4M114 50Hz]                                                        |      | 04/09/14     |
| /13/ | Diagrama Unilineal Red MT PE<br>Sarco                                            | CL09-E-DRW-4000-0007-00                                                                                            |      | 27/10/16     |
| /14/ | Estudios de Interconexión PE<br>Sarco – Flujos de Potencia                       | https://pgp.coordinador.cl/irequests/5af312bc36d9ef416dc7f0b8<br>ee-2018-it-025-c.pdf<br>ee-2018-it-025-c-bd.pfd   | С    | 24/12/18     |
| /15/ | Red MT PE Sarco                                                                  | Datos Red MT DIgSILENT - PE Sarco                                                                                  |      |              |
| /16/ | Determinación de pérdidas en red MT                                              | Flujo Potencia -DIgSILENT PE Sarco                                                                                 |      | 12/07/19     |
| /17/ | Diagrama Unilineal SSAA SE<br>Sarco                                              | Diagrama unilineal SSAA CA - SSEE Sarco                                                                            |      | 26/01/16     |