

Empresa: Coordinador Independiente del Sistema Eléctrico Nacional

País: Chile

Proyecto: Estudio de SSCC para la Operación del SEN

Descripción: INFORME 4 - SSCC Control de Frecuencia y Tensión — 2020-2023

PARTE A – DESARROLLOS INICIALES

Informe Final

Código de Proyecto: EE-2019-004

Código de Informe: EE-ES-2019-0792

Revisión: A

Power System Studies, Power Plant Field Testing and Electrical Commissioning ISO9001:2008 Certified

31 may. 19

Este documento EE-ES-2019-0792-RA fue preparado para Coordinador Independiente del Sistema Eléctrico Nacional por Estudios Eléctricos. Para consultas técnicas respecto del contenido del presente comunicarse con:

Ing. Nicolás Turturici
Departamento de Estudios
nicolas.turturici@estudios-electricos.com

Ing. Pablo Fernández

Departamento de Estudios

pablo.fernandez@estudios-electricos.com

Ing. Gustavo Alvarado
Departamento de Estudios
gustavo.alvarado@estudios-electricos.com

Ing. Jorge Herrera
Departamento de Estudios
jorge.herrera@estudios-electricos.com

Ing. Rodrigo Bernal
Departamento de Estudios
rodrigo.bernal@estudios-electricos.com

Ing. David Perrone
Coordinador Dpto. Estudios
david.perrone@estudios-electricos.com

Ing. Javier Vives
Coordinador Dpto. Estudios
javier.vives@estudios-electricos.com

Ing. Alejandro Musto
Gerente Dpto. Estudios
alejandro.musto@estudios-electricos.com

Este documento contiene 45 páginas y ha sido guardado por última vez el 31/05/2019 por Nicolás Turturici; sus versiones y firmantes digitales se indican a continuación:

Rev	Fecha	Comentarios	Realizó	Revisó	Aprobó
А	31.5.2019	Para revisión. Contempla instancias previas de revisión del Coordinador a Informe Inicial e Informes 1, 2 y 3.	NiT/RoB	JaV/DaP	AlM

Todas las firmas digitales pueden ser validadas y autentificadas a través de la web de Estudios Eléctricos; http://www.estudios-electricos.com/certificados.

Índice

1	INT	RODUCCIÓN	4
2	GEI	NERALIDADES - ESCENARIOS BASE	5
		Análisis de información PCP/PLP	
	2	1.1 Detalle de la información recibida	5
	2	1.2 Generación	6
	2	1.3 Transferencia	15
	2	2.1.4 Demanda	16
	2.2	Topologías y Obras	18
	2.3	Desarrollo de Escenarios Base	19
	2	3.1 Criterios generales de elaboración	19
	2	3.2 Características de los Escenarios Base	20
	2.4	Tensiones de Servicio	24
3	AN.	ÁLISIS INICIAL DE MÍNIMA INERCIA	25
	3.1	Generalidades	25
	3.2	Zonas de estudio	25
	3	2.1 Zona Norte Grande	25
	3	2.2.2 Zona Norte Chico	36
	3	2.2.3 Zona Centro	38
	3	5.2.4 Zona Sur	41
	3.3	Resumen de resultados	43
1	REG	EFRENCIAS	11

1 INTRODUCCIÓN

En el presente documento presenta el desarrollo de los análisis iniciales comunes a los SSCC de Control de Frecuencia y Control de Tensión.

El mismo contempla en primera instancia el abordaje de los escenarios base de estudio, que fueron tomados como punto de partida para el desarrollo de los escenarios específicos para cada Servicio. Dentro de este desarrollo se presenta el análisis de las proyecciones PCP/PLP que fueron tomadas como referencia para la recreación de los escenarios.

A su vez, el documento incluye la determinación de los montos mínimos de inercia por zona que permitan asegurar que no se presenten condiciones de inestabilidad angular/tensión ante la ocurrencia de una contingencia, específicamente la desconexión de la unidad generadora más grande de cada una de estas.

Este análisis, además de determinar los montos de inercia mencionados, también permite construir los escenarios específicos que serán el punto de partida para los posteriores estudios de control de frecuencia y tensión.

2 GENERALIDADES - ESCENARIOS BASE

2.1 Análisis de información PCP/PLP

En el marco del desarrollo del presente estudio y como parte de la información necesaria para representar la operación del sistema a futuro, El Coordinador ha provisto archivos que contienen la Planificación de Corto y Largo Plazo, es decir, las condiciones de despacho de todos los puntos de generación y montos de transferencia sobre los principales vínculos para cada uno de los horizontes de estudio.

En este apartado se realiza el análisis de la información recibida, de manera de determinar los aspectos más importantes en la operación planificada que permitan luego la confección de escenarios base y específicos de cada una de las etapas de estudio lo más cerca posible de la realidad esperada.

El análisis se enfoca en la composición de la matriz de generación (térmica, hidráulica y renovable), los intercambios de potencia entre las distintas áreas del sistema y los niveles de demanda.

2.1.1 Detalle de la información recibida

La siguiente tabla presenta el detalle de los archivos recibidos cuya información se analiza en ellos apartados venideros.

Año Mes/Semana **Casos DCO** Hidrología Húmeda Demanda Mínima 06/Diciembre Seca 2020 Húmeda 16/Diciembre Demanda Máxima Seca Húmeda Demanda Mínima 05/Diciembre Seca 2021 Húmeda Demanda Máxima 16/Diciembre Seca Húmeda Demanda Mínima 04/Diciembre Seca 2022 Húmeda Demanda Máxima 16/Diciembre Seca Húmeda 03/Diciembre Demanda Mínima Seca 2022 Húmeda 19/Diciembre Demanda Máxima Seca

Tabla 2-1: Detalle de la información recibida

2.1.2 Generación

Invección Renovable

La generación mediante fuentes renovables es uno de los focos más importantes en el análisis de la operación de la zona norte del SEN «Norte Chico», ya que la misma cuenta con gran cantidad de plantas de producción tanto eólicas como fotovoltaicas. A su vez, es de vital importancia el conocimiento del comportamiento de la generación renovable del Norte Grande, la cual tendrá un impacto significativo en las transferencias con el Norte Chico, y en la inercia de este último.

La inyección eólica se presenta durante todo el día, pudiendo identificar una evolución típica donde los valores máximos se encuentran en horas de la tarde/noche, descendiendo durante la madrugada para alcanzar su mínimo al mediodía.

La generación solar naturalmente resulta máxima en horas del mediodía cuando se presenta la máxima radiación, coincidente con la mínima inyección eólica. Más allá de esto se observa que los montos de generación de mantienen relativamente constantes entre las 10am y las 5pm con niveles superiores al 85% de la generación máxima detectada cada día analizado. Finalmente se observa que antes de las 9am y luego de las 7pm la producción resulta inferior al 50%, siempre respecto del máximo diario, es decir que las tasas de incremento y decremento de la inyección resultan elevadas.

De la combinación de ambos recursos se encuentra que aproximadamente a las 17hs se establece la máxima inyección renovable. La figura siguiente figura presenta los niveles de generación máximos, promedios y mínimos para cada hora del día, de todos los escenarios PCP/PLP analizados, en las 3 topologías de estudio, mientras que la Figura 2-2 muestra una evolución semanal típica de la inyección renovable.

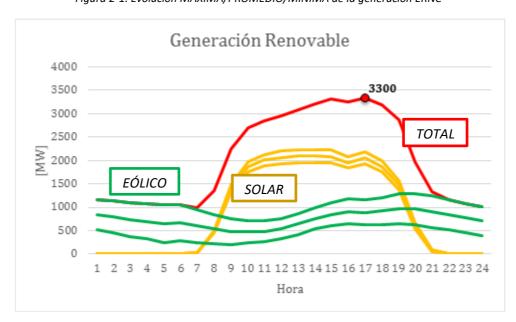



Figura 2-1: Evolución MÁXIMA/PROMEDIO/MÍNIMA de la generación ERNC

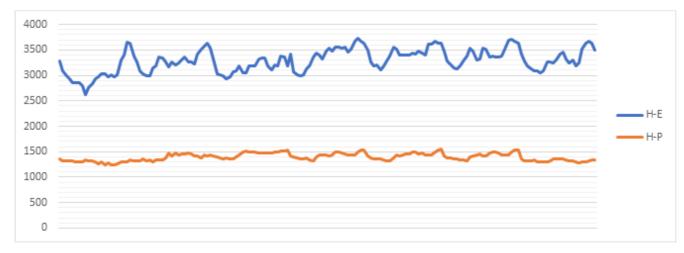
Figura 2-2 – Evolución semanal típica de la inyección Eólica y Solar

La siguiente tabla presenta los valores máximos esperados para cada tipo de generación en los distintos horizontes de estudio, destacando a su vez el valor mínimo de inyección eólica. Se destaca que el valor mínimo de la generación solar no se informa ya que es cero.

Tabla 2-2: Valores representativos de la generación ERNC

Conn	Eó	Solar		
Caso	Máximo [MW]	Mínimo [MW]	Máximo [MW]	
2020	1293	202	2232	
2021	1293	233	2232	
2022	1290	224	2232	
2023	1278	238	2232	

En este sentido, los escenarios se construyen contemplando inyección de generación renovable que siga los lineamientos de la generación máxima y mínima proyectada. Por otro lado, si bien se observa que no existe generación renovable nula (en horas de noche existe aporte de plantas eólicas), se construyen casos con baja o nula generación.


Variaciones de hidrología

A partir del análisis de las proyecciones PCP/PLP es posible dar órdenes de magnitud a las proporciones de generación térmica/hidráulicas en los escenarios húmedos/secos. Esto resulta relevante dado que tiene directa relación con la distribución de generación en el sistema y por lo tanto en la definición de las transferencias por los principales vínculos.

Normalmente, las centrales de pasada varían levemente su inyección a lo largo de un día por lo que su generación puede suponerse constante, mientras que las centrales de embalse ajustan su generación según las condiciones de demanda, tal como se muestra en la figura a continuación.

Figura 2-3 – Despacho semanal de Centrales Hidroeléctricas de Embalse Vs Pasada

A su vez, se observa un comportamiento bien diferenciado de la participación hidroeléctrica según la disponibilidad del recurso primario. En este sentido, se muestra a continuación la evolución semanal de este tipo de generación para las dos condiciones hidrológicas de cada año analizado, comenzando desde el domingo.

6000 5500 5000 2020 - HH - Dmax 4500 2020 - HS - Dmin 4000 2021 - HH - Dmax 3500 2021 - HS - Dmin 3000 2022 - HH - Dmax 2500 2022 - HS - Dmin 2000 2023 - HH - Dmax 1500 2023 - HS - Dmin 1000 500

Figura 2-4 – Despacho Hidráulico semanal para diferentes hidrologías y años

Despacho térmico

Esta variabilidad hidrológica, sumado a la intermitencia de la generación renovable, deriva naturalmente en escenarios con distinta participación de la generación térmica en la matriz de despacho del SEN. Vale destacar que este tipo de generación, cualquiera sea su tecnología, se encuentra distribuida en las distintas regiones del SEN y que cada una de estas zonas presenta características particulares, por lo cual se abordan de manera diferenciada.

Zona Norte

La zona norte (desde SS/EE Nogales 220kV/Polpaico 500kV hacia el norte) posee en su totalidad unidades sincrónicas impulsadas por máquinas térmicas de diferentes tecnologías, por lo que resulta de importancia realizar un análisis pormenorizado de su planificación.

Al analizar la planificación, se observa que, durante las horas del mediodía, la inyección térmica (despacho) se reduce para dar lugar al potencial renovable presente en la zona. Luego aumenta a medida que desciende la producción solar, permitiendo no sólo suplir el descenso de este recurso sino además cubrir la demanda nocturna. Superada esta última condición, se reduce levemente durante la madrugada para repetir el ciclo al día siguiente.

Los montos de generación dependen del día considerado, pero principalmente de la hidraulicidad evaluada. Así, en condiciones de hidrología seca la generación térmica resulta más relevante en la matriz global, mientras que su participación se reduce en épocas de mayor disponibilidad de agua. Siendo que las unidades con base hídrica se encuentran en el sur del país las diferentes condiciones de hidrología repercuten directamente sobre los niveles de transferencia que se establecen en el sistema de transmisión de 500kV. En este sentido la siguiente figura presenta la evolución de la generación térmica de la región norte del SEN durante un día completo para cada uno de los horizontes analizados, en condiciones de hidrología húmedas y secas.

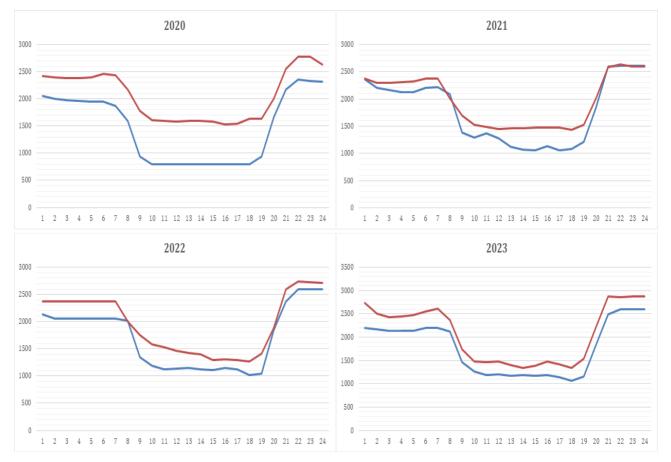


Tabla 2-3: Evolución típica de la generación térmica en la Zona Norte «Norte Grande + Norte Chico»

A fin de presentar la participación de la generación térmica de la zona norte respecto de producción total, la siguiente tabla contiene los niveles máximos y mínimos esperados para cada escenario posible.

Tabla 2-4: Nivel de participación de la generación térmica de la zona norte en la producción global

Caso	Máximo [%]	Mínimo [%]
HH-20-Dmax	27,3	11,9
HH-20-Dmin	25,1	10,2
HS-20-Dmax	25,7	16,8
HS-20-Dmin	24,1	12,1
HH-21-Dmax	26,1	13,0
HH-21-Dmin	26,1	10,2
HS-21-Dmax	26,0	18,3
HS-21-Dmin	24,1	12,3
HH-22-Dmax	27,4	11,6
HH-22-Dmin	25,8	9,6
HS-22-Dmax	27,2	13,8
HS-22-Dmin	26,6	11,9
HH-23-Dmax	29,7	16,1
HH-23-Dmin	24,2	10,4
HS-23-Dmax	29,8	16,1
HS-23-Dmin	24,12	12,2

Se destaca que la máxima participación se registra siempre cerca de la 22hs mientras que la mínima participación se establece luego del medio día alrededor de 16hs, comportamiento que mantiene en todas las topologías «años» analizados.

Zona Norte Grande

Dentro de la zona norte resulta importante diferenciar entre el sector Norte Chico y Norte Grande. En términos de montos de generación térmica la región Norte Grande presenta la mayor capacidad instalada, contando con numerosas centrales. La generación en esta área define de manera directa el intercambio de potencia entre ella y el Norte Chico.

Tal como se presenta a continuación en líneas generales la inyección de potencia en el norte grande resulta máxima en horas de la noche, es decir cuando se reduce la inyección solar y aumenta la demanda. En este sentido se observa que, en las horas de máximo aprovechamiento solar ciertas unidades presentan un descenso de su generación, al tiempo que otras salen de servicio (CTM3 y U16). En consecuencia, cuando disminuye la generación solar se incrementa el despacho de las unidades que presentan disponibilidad y se reincorporan las que fueron apagadas, conducta que se repite durante todo el horizonte de estudio.

0

Estudio de SSCC para la Operación del SEN

INFORME 4 - SSCC Control de Frecuencia y Tensión – 2020-2023

400 350 ANDINA 300 ANGAMOS_1 -ANGAMOS_2 250 IE_MEJILLONES 200 NUEVA_TOCOPILLA_1 NUEVA_TOCOPILLA_2 150 TARAPACA 100 *TOCOPILLA_U16-TG+TV_GNL_A TOCOPILLA-TG3_GNL_A 50

Figura 2-5: Despacho térmico del Norte Grande en un día

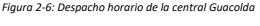
La siguiente tabla presenta los valores máximos y mínimos de la generación térmica de la zona del norte grande esperados para cada año de estudio.

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Tabla 2-5: Valores extremos de la generación térmica del Norte Grande

Año	Máximo [MW]	Mínimo [MW]		
2020	2477	600		
2021	2434	600		
2022	2491	600		
2023	2751	665		

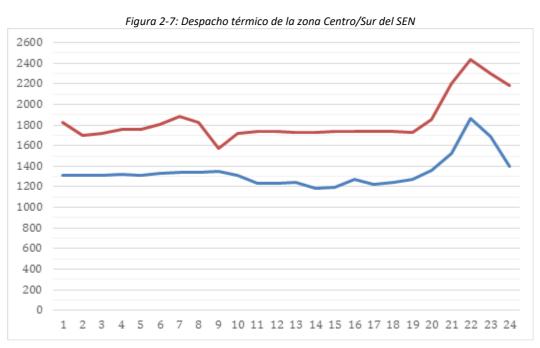
Zona Norte Chico (Guacolda)


El Norte Chico por su parte cuenta con el aporte casi exclusivo de la central Guacolda. Según se extrae de la información recibida, se planifica que la central opere normalmente con 3 o 4 unidades en servicio, no encontrándose ningún caso con las 5 unidades operativas.

Por su ubicación dentro de la red su producción compite directamente con la generación renovable del Norte Chico por lo cual, se estipula que la misma reduzca su inyección durante las horas del mediodía y tarde para evitar sobrecargas en los vínculos de la zona, operando a plena potencia en horas de la noche, tal como se muestra en la figura a continuación.

Estudio de SSCC para la Operación del SEN

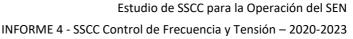
INFORME 4 - SSCC Control de Frecuencia y Tensión – 2020-2023



Zona Centro/Sur

Con relación a la zona norte del SEN, la generación sincrónica instalada en la zona Centro/sur del sistema presenta una mayor diversificación, destacada principalmente por la mayor concentración de centrales hidroeléctricas. A su vez, la participación de la generación renovable en estas regiones resulta considerablemente inferior, con un menor impacto en las variaciones diarias de la generación intermitente. En este sentido, las modificaciones al despacho de la generación térmica localizada al centro/sur del sistema se debe, principalmente, al seguimiento de la curva de demanda, con un comportamiento cuasi constante en las horas diurnas, y un máximo de inyección coincidente con las horas de mayor demanda.

A continuación se presenta el despacho térmico horario de la zona Centro/Sur del SEN considerando un día tipo para el año 2020 (húmedo / seco).



Resumen inyección térmica

En la siguiente tabla se presenta para cada una de las unidades de generación térmica de mayor relevancia del SEN la participación o no dentro del despacho semanal sobre cada uno de los casos PCP/PLP recibidos. De la misma se puede notar que ciertas unidades resultan despachadas, al menos una hora, en todos los casos analizados, mientras que un menor número de unidades lo hace dependiendo de las restantes condiciones (hidraulícidad, demanda, etc.). A su vez, se destaca que existen unidades de magnitud relevante que no resultan despachadas en ninguno de los escenarios de planificación evaluados.

Tabla 2-6: Participación en el despacho de las centrales térmicas

	Año	, ,		20	страсто	,,, с,, с	aesp 20		ic ras c	circiai		22			20	23	
		×			<u>_</u>	×			드	×			드	×	1	1	
	Caso	HH-Dmax	HH-Dmin	HS_Dmax	HD_Dmin	HH-Dmax	HH-Dmin	HS_Dmax	HD_Dmin	HH-Dmax	HH-Dmin	HS_Dmax	HD_Dmin	HH-Dmax	HH-Dmin	HS_Dmax	HD_Dmin
(Generador							De	spacho	sema	nal						
	Andina																
	IEM																
	Angamos 1																
	Angamos 2																
	NTO1																
	NTO2																
	CTTAR																
	Tocop_TG3																
a	Tocop_U16																
aud	CTM3																
Norte Grande	Hornitos																
orte	Tocop_U15																
ž	Kelar Cochrane 1																
	Cochrane 2																
	Atacama CC1																
	Atacama CC2																
	CTM1																
	CTM2																
	Tocop_U12																
	Tocop_U13																
	Tocop_U14																
•	Guacolda 3																
Norte Chico	Guacolda 4																
ë O	Guacolda 5																
for	Guacolda 1																
	Guacolda 2																
	Nehuenco 1																
	Nehuenco 2																
	San Isidro 2																
	Ventanas 2																
5	N. Renca																
Centro	Campiche																
J	Ventanas 1																
	Nueva Ventanas																\vdash
	Candelaria																\vdash
	Quintero																\vdash
	San Isidro 1																
Sur	Bocamina 1 Bocamina 2																
Ñ	Santa María																
	Saiita iviaiia																

Resumen de generación

A continuación, se presenta la distribución horaria de la matriz de generación a lo largo de un día típico, para lo cual se escoge un escenario de hidrología húmeda de diciembre 2020. Vale destacar que la distribución presenta una característica que se mantiene en todos los casos de estudio, pudiendo extrapolarse a las restantes condiciones variando principalmente el nivel de participación de la generación térmica/hidráulica según las distintas hidrologías.

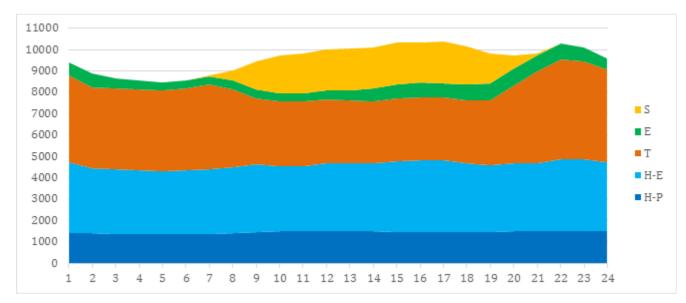


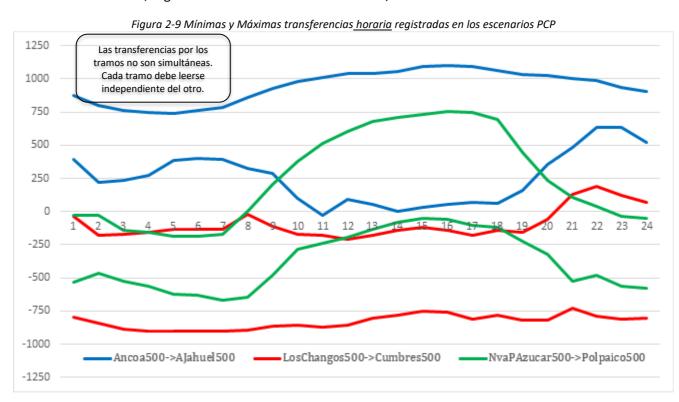
Figura 2-8: Matriz de despacho horaria del SEN

A modo de resumen la siguiente tabla contiene los valores máximos y mínimos de cada tipo y del total de generación para cada año analizado. Vale aclarar que los valores extremos de cada tipo de generación pueden darse de forma no simultánea y, por lo tanto, la no correspondencia de la suma individual con el máximo y mínimo total de generación.

Tipo Max [MW] Min [MW] Max [MW] Min [MW] Max [MW] Min [MW] Max [MW] Min [MW] H. Embalse H. Pasada **Térmica** Solar **Eólica** Total

Tabla 2-7: Valores representativos de la generación

2.1.3 Transferencia


De la combinación de los diferentes estados de generación anteriormente presentados, surge un conjunto de escenarios que establecen condiciones de transmisión sobre todos los vínculos del sistema.

Del total de la red de transmisión resultan de especial interés aquellas líneas que sean representativas en cuanto a intercambios de potencia entre las principales zonas del sistema. En este sentido, este apartado se enfoca en las siguientes líneas de transmisión:

- Los Changos Cumbre 2x500kV que establece la interconexión entre las zonas Norte Grande y Norte Chico.
- Nueva Pan de Azúcar-Polpaico 2x500kV que se constituye como el nexo entre el Norte Chico y la región Centro-Sur.
- Ancoa Alto Jahuel 4x500kV que representa el vínculo principal entre la zona sur con la región metropolitana.

La importancia de estos vínculos radica en que los niveles de transferencia, junto a las condiciones de demanda y niveles de inyección, permite establecer de manera completa la operación del SEN.

En la siguiente gráfica se muestran las transferencias máximas y mínimas respectivamente a través de los vínculos mencionados, registradas en todos los escenarios PCP/PLP analizados.

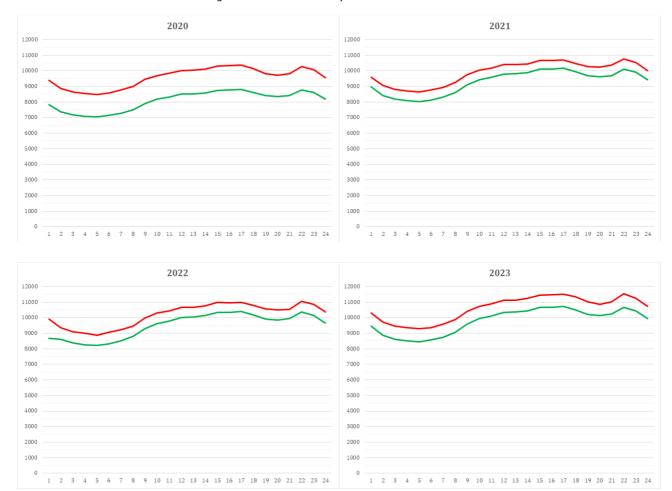
De la misma se puede observar que:

- Se espera que, generalmente, el Norte Grande se presente importando potencia del resto del SEN, alcanzado valores de hasta 900MW. A su vez, puede presentarse la condición del Norte Grande exportando leves montos de potencia en horas de la noche (hasta 200MW), cuando disminuye la inyección fotovoltaica y se incrementa el despacho de la generación térmica localizada en la misma, al tiempo que se incrementa la demanda.
- El flujo por la línea Nueva Pan de Azúcar Polpaico se modifica principalmente con la inyección de potencia de generación renovable. Así durante las horas del mediodía y la tarde las transferencias se dan en sentido NORTE→SUR alcanzando montos de hasta 750MW. Ya en la tarde-noche comienza a disminuir, invirtiendo a sentido SUR→NORTE alcanzando las máximas transferencias (en este sentido) en horas de la mañana, con valores de hasta 700MW. En este sentido, los flujos intercambiados entre el Norte y Centro del SEN se mantienen en un rango de ±750MW, variando principalmente con el nivel de penetración renovable de la zona norte.
- La transferencia sobre el vínculo Ancoa Alto Jahuel se ven directamente afectada por los niveles de hidrología. Si bien el sentido de transmisión es siempre SUR→NORTE, los montos se incrementan en estaciones húmedas y se reducen en los meses secos. Las máximas transferencias registradas resultan de 1100MW.

Tramo	Los Changos – Cumbre [MW]		N. P. A. Polpaic	zúcar – o [MW]	Ancoa – Alto Jahuel [MW]		
Año	N→S	s→N	N→S	s→n	N→S	s→n	
2020	90	900	755	668	27	997	
2021	5	900	746	643	54	1029	
2022	38	874	554	566	22	1065	
2023	186	824	566	574	108	1100	

Tabla 2-8 – Máximas niveles de transferencia registradas en escenarios PCP/PLP

2.1.4 Demanda


La evolución y crecimiento de la demanda resulta de vital importancia para la planificación del sistema. Si bien la información recibida no se enfoca en pronósticos de consumo, se puede inferir de la misma como se espera que se comporte el mismo en los años venideros.

El análisis de la demanda se divide en dos aspectos, primero en su variación a lo largo de las 24hs de un día y luego sobre las tasas de crecimientos esperadas.

Tal como es sabido el consumo varía en línea con la actividad económica y social, así durante el día la demanda resulta naturalmente mayor que en horas de la madrugada. La curva característica de demanda cuenta con una rampa de subida muy alta alcanzando importantes niveles de consumo incluso antes del mediodía, permaneciendo prácticamente constante hasta las 22hs cuando comienza a disminuir. El valor mínimo en horas de la madrugada -5am- y el máximo ya sea en horas de la tarde -17hs- o durante la noche -22hs-.

Figura 2-10: Característica y evolución de la demanda

Más allá de las características posibles en las que puede evolucionar la demanda, se presentan a continuación los montos de consumo máximo y mínimo posible para cada hora del día de los años de estudio.

Tabla 2-9: Mínimos y Máximos niveles de demanda

Tramo	Demanda							
Año	Máxima	Mínima						
2020	10365 MW	7061 MW						
2021	10754 MW	8033 MW						
2022	11046 MW	8216 MW						
2023	11547 MW	8455 MW						

Las diferentes formas en las que evoluciona la demanda, así como los montos posibles que la misma puede adoptar para cada hora del día, permiten la confección de escenarios que representen múltiples combinaciones de generación y consumo que puedan presentarse en la realidad.

2.2 Topologías y Obras

El estudio contempla su desarrollo en 2 Etapas:

- Etapa 1: Análisis al año 2020.
- Etapa 2: Análisis para el período 2021-2023, con detalle al menos anual.

Teniendo en cuenta esto, se plantean 4 topologías bases de estudio, a diciembre de cada uno de estos años. A continuación se listan las principales obras asociadas a cada topología:

Topología diciembre 2020:

- LT Illapa Cumbre 2x220kV + transformador Cumbre 500/220kV.
- o LT Nva Pan de Azúcar Polpaico 2x500kV.
- LT Kimal Los Changos 2x500kV + 3er autotransformador 500/220kV Los Changos + transformadores 2 x 500/220kV Kimal. (Fecha prevista P/S: julio 2019)
- Proyecto de Compensación reactiva Nva Pan de Azúcar Polpaico. (Fecha prevista P/S: febrero 2020)
- 2do transformador 500/220kV en SSEE Nva Cardones, Nva Maitencillo y Nva Pan de Azúcar. (Fecha prevista P/S: febrero 2020)

• Topología diciembre 2021:

- o S/E Río Aconcagua. (Fecha prevista P/S: octubre 2021)
- LT Nva Pichirropulli Tineo 2x500kV (energizada en 220kV). (Fecha prevista P/S: octubre 2021)

• Topología diciembre 2022:

- LT Nva Maitencillo Punta Colorada Nva Pan de Azúcar 2x220kV. (Fecha prevista P/S: abril 2022)
- LT Nva Pan de Azúcar Punta Sierra Nva Los Pelambres 2x220kV. (Fecha prevista P/S: noviembre 2022)

• Topología diciembre 2023:

- S/E Parinas 500kV (Fecha prevista P/S: marzo 2023)
- LT Agua Santa La Pólvora Nva Casablanca A. Melipilla 2x220kV. (Fecha prevista P/S: octubre 2023)
- LT Itahue Mataquito Nirivilo Nva Cauquenes Dichato Hualqui 2x220kV. (Fecha prevista P/S: octubre 2023)
- LT Tineo Nva Ancud 2x500kV (energizada en 220kV). (Fecha prevista P/S: noviembre 2023)

2.3 Desarrollo de Escenarios Base

2.3.1 Criterios generales de elaboración

Los escenarios base desarrollados para el estudio consideran los siguientes puntos relevantes:

- → Hidrología seca y húmeda
- → Nivel de generación ERNC alta durante el día, y baja durante la noche
- → Nivel de demanda sistémica alta en día laboral, y baja en domingo
- → Consideraciones adicionales

Hidrología

La información de los despachos PCP/PLP suministrados, proporcionan los lineamientos sobre cuáles son las proporciones máximas y mínimas esperadas para condiciones de demanda alta y baja.

Los escenarios de hidrología seca tienen como principal característica generar transferencias en sentido norte-sur por los vínculos de interés. En contraposición los escenarios hidráulicos tenderán a invertir o disminuir los flujos dado que este tipo de generación está fundamentalmente concentrada en la zona sur del sistema.

Generación ERNC

A partir de la información suministrada en los Escenarios PCP/PLP, resulta esperable que en toda la franja horaria se encuentre generación ERNC no nula, cuyo nivel obedece a sus propios perfiles de generación en función de su tecnología: aporte fotovoltaico durante las horas diurnas y aporte eólico las 24 horas del día. Más allá de esto, según se encuentre necesario/conveniente, se generan casos más extremos que consideran generación ERNC nula o por encima de los valores previstos en la programación.

Demanda

Para la elaboración de los escenarios de estudio, se toman como fuentes primarias de información, los escenarios de la base de datos del SEN, emitida en noviembre de 2018 por el Coordinador Eléctrico Nacional y los escenarios de Programación a Corto y Largo Plazo (PCP y PLP respectivamente) suministrados para fines del presente estudio.

De los escenarios de la base de datos, se toman los correspondientes a demanda alta en día laboral y a demanda baja en domingo, a partir de los cuales se efectúa un escalamiento de los consumos a las fechas de estudio de cada topología, tomando como referencia los factores de crecimiento sistémicos indicados en el Informe de Precio de Nudo ITD - Julio 2018.

Transferencias

Siguiendo los criterios presentados anteriormente, las condiciones operativas del sistema se basan en previsiones económicas, las cuales permiten generar escenarios de mayor probabilidad de ocurrencia. Más allá de esto, cuando se encuentre factible, se desarrollarán casos que permitan alcanzar límites de trasferencia acordes a cada topología teniendo bajo consideración las características de cada uno de ellos. Esto se realiza cuidando de no establecer condiciones que impliquen una operación técnicamente inviable o económicamente muy distante de lo previsto.

2.3.2 Características de los Escenarios Base

En línea con el análisis de escenarios PCP/PLC y los criterios presentados para la elaboración de los casos de estudio (presentados en el apartado anterior) se diseñan para cada topología de estudio 8 escenarios base que representan distintas condiciones factibles de operación. A continuación, se presenta un resumen de los escenarios base previstos, indicando los puntos más relevantes de cada uno; montos de generación, niveles de transferencia, inercia, entre otros.

Tabla 2-10. Resumen Escenarios 2020

ID escenario	1	2	3	4	5	6	7	8	
Hidrología		HÚM	1EDA			SE	CA		
Demanda	Baja	Alta	Baja	Alta	Alta	Baja	Baja	Alta	
Horario	No	che		D	ía	a		Noche	
Generacion Total [MW]	7.950	10.823	7.913	10.734	10.738	7.901	7.928	10.702	
HIDRAULICO (embalse) [%]	32	35	26	26	17	16	22	22	
HIDRAULICO (pasada) [%]	12	14	12	13	10	11	11	9	
• TERMICO [%]	51	51	33	35	45	48	67	59	
• EOLICO [%]	5	0	9	10	11	9	0	10	
• SOLAR [%]	0	0	19	16	18	17	0	0	
Reserva Efectiva TOTAL @10s [MW]	402	476	376	376	378	410	265	349	
• Reserva Zona Norte Grande @10s [MW]	61	55	65	28	26	52	69	74	
• Reserva BESS Zona Norte Grande [MW]	51	51	51	51	51	51	51	51	
Reserva Resto del SEN @10s [MW]	290	369	261	298	301	307	145	224	
Reserva Zona Norte Grande [%]	28	22	31	21	20	25	45	36	
• Reserva Resto del SEN [%]	72	78	69	79	80	75	55	64	
Inercia Total [MVAs]	45.330	61.690	36.994	48.929	48.766	38.170	48.886	60.331	
Inercia Zona Norte Grande [MVAs]	1 3.004	11.869	1 0.735	8.804	11.213	1 1.213	1 6.566	1 6.566	
Inercia Resto del SEN [MVAs]	32.32 ₆	49.821	26.25 ₉	40.124	37.554	26.95 ₇	32.320	43.76 5	
Principales transferencias en 500kV									
• TRANSF KIMAL → LCHAN 2x500kV [MW]	-491	-702	-431	-521	-122	- <mark>2</mark> 90	-199	-239	
• TRANSF LCHAN → CUMB 2x500kV [MW]	- <mark>3</mark> 82	-781	- <mark>2</mark> 96	-461	1 <mark>8</mark> 5	-54	1 <mark>8</mark> 4	58	
• TRANSF NPAZU → POL 2x500kV [MW]	- <mark>3</mark> 63	-1.011	391	3 <mark>99</mark>	1.158	644	21	322	
 TRANSF ANCOA → A.JAH 4x500kV [MW] 	1.397	2.184	1.056	1.240	6 <mark>20</mark>	614	1.136	1.194	
• TRANSF CHARR → NORTE 3x500kV [MW]	750	1.275	328	5 <mark>16</mark>	451	443	748	642	
Generacion en principales zonas					_	_	_		
GEN SINCRONICA ANCOA [MW]	620	1.001	890	928	382	215	360	799	
GEN CHARRUA [MW]	1.3 90	2.718	901	1.728	1.60 0	948	1.651	1.800	
GEN SAN LUIS [MW]	757	1. 087	397	1 .027	1.087	757	757	1. 087	
GEN VENTANAS [MW]	374	814	150	205	610	197	420	760	
GEN GUACOLDA [MW]	600	600	320	305	305	370	560	600	
• GEN TEN [MW]	375	375	375	375	375	375	603	536	
GEN KAPATUR [MW]	520	520	520	520	520	520	520	520	
GEN CHACAYA [MW]	320	160	140	110	325	280	320	320	
GEN CRUCERO [MW]	580	610	360	190	520	420	995	1 .002	
GEN Eólicos Norte Grande [MW]	71	0	101	162	182	121	0	121	
GEN Fotovoltaicos Norte Grande [MW]	0	0	583	622	699	466	0	0	
GEN Eólicos Resto del SEN [MW]	315	0	574	863	1 .019	589	0	931	
GEN Fotovoltaicos Resto del SEN [MW]	0	0	953	1.139	1. <mark>200</mark>	859	0	0	

Tabla 2-11. Resumen Escenarios 2021

ID escenario	1	2	3	4	5	6	7	8
Hidrología		HÚN	1EDA			SE	CA	
Demanda	Baja	Alta	Baja	Alta	Alta	Baja	Baja	Alta
Horario	No	che		D	ía		Noche	
Generacion Total [MW]	8.163	11.124	8.125	11.057	11.054	8.114	8.122	11.017
• HIDRAULICO (embalse) [%]	32	34	26	27	17	16	18	21
• HIDRAULICO (pasada) [%]	14	15	14	14	9	11	11	9
• TERMICO [%]	48	51	32	34	45	47	71	60
• EOLICO [%]	6	0	9	9	11	10	0	10
• SOLAR [%]	0	0	19	16	17	16	0	0
Reserva Efectiva TOTAL @10s [MW]	401	460	377	397	384	411	273	369
• Reserva Zona Norte Grande @10s [MW]	60	70	65	27	37	52	69	95
• Reserva BESS Zona Norte Grande [MW]	51	51	51	51	51	51	51	51
• Reserva Resto del SEN @10s [MW]	290	339	262	318	296	308	153	224
Reserva Zona Norte Grande [%]	28	26	31	20	23	25	44	39
• Reserva Resto del SEN [%]	72	74	69	80	77	75	56	61
Inercia Total [MVAs]	46.265	64.089	38.063	51.028	49.302	38.755	53.646	63.370
Inercia Zona Norte Grande [MVAs]	1 3.004	13.599	1 0.735	8.804	11.772	1 1.213	19 .433	1 9.433
Inercia Resto del SEN [MVAs]	33.26 ₁	50.490	27.328	42.224	37.531	27.54 ²	34.212	43.93 6
Principales transferencias en 500kV								
• TRANSF KIMAL → LCHAN 2x500kV [MW]	-497	-702	-452	- 5 23	-74	-311	-196	- <mark>2</mark> 86
• TRANSF LCHAN → CUMB 2x500kV [MW]	- <mark>3</mark> 99	-601	- <mark>3</mark> 33	-453	2 <mark>3</mark> 8	-91	3 <mark>61</mark>	1 <mark>9</mark> 3
• TRANSF NPAZU → POL 2x500kV [MW]	-406	-873	3 <mark>38</mark>	3 <mark>75</mark>	1.170	616	1 <mark>6</mark> 8	418
 TRANSF ANCOA → A.JAH 4x500kV [MW] 	1.470	2.342	1.075	1.424	7 53	710	822	1.249
• TRANSF CHARR → NORTE 3x500kV [MW]	720	1.313	291	5 90	5 <mark>61</mark>	4 <mark>91</mark>	4 <mark>78</mark>	7 06
Generacion en principales zonas						-	_	
GEN SINCRONICA ANCOA [MW]	620	1 .024	833	917	412	215	360	799
• GEN CHARRUA [MW]	1.3 90	2.828	901	1.89 <mark>8</mark>	1.71 5	948	1. <mark>3</mark> 43	1.800
GEN SAN LUIS [MW]	757	1 .087	397	1 .027	1 .087	757	757	1 .087
GEN VENTANAS [MW]	293	617	150	180	610	191	420	760
GEN GUACOLDA [MW]	600	600	320	305	335	380	560	600
• GEN TEN [MW]	375	599	375	375	375	375	603	559
GEN KAPATUR [MW]	520	520	520	520	520	520	745	750
GEN CHACAYA [MW]	320	160	140	160	325	280	310	320
GEN CRUCERO [MW]	600	610	360	190	615	420	995	927
GEN Eólicos Norte Grande [MW]	71	0	101	162	182	121	0	121
GEN Fotovoltaicos Norte Grande [MW]	0	0	583	622	699	466	0	0
GEN Eólicos Resto del SEN [MW]	395	0	596	863	1 .082	700	0	1 .031
GEN Fotovoltaicos Resto del SEN [MW]	0	0	953	1.140	1. 200	859	0	0

Tabla 2-12. Resumen Escenarios 2022

ID escenario	1	2	3	4	5	6	7	8
Hidrología		HÚN	1EDA			SE	CA	
Demanda	Baja	Alta	Baja	Alta	Alta	Baja	Baja	Alta
Horario	No	che		D	ía		Noche	
Generacion Total [MW]	8.391	11.488	8.352	11.391	11.376	8.336	8.366	11.363
• HIDRAULICO (embalse) [%]	33	34	26	27	16	17	20	20
• HIDRAULICO (pasada) [%]	15	15	15	14	10	11	11	9
• TERMICO [%]	45	51	31	32	46	46	69	60
• EOLICO [%]	6	0	9	11	11	11	0	11
• SOLAR [%]	0	0	18	15	17	16	0	0
Reserva Efectiva TOTAL @10s [MW]	367	437	376	398	378	407	278	342
• Reserva Zona Norte Grande @10s [MW]	60	70	65	28	37	52	69	73
• Reserva BESS Zona Norte Grande [MW]	51	51	51	51	51	51	51	51
• Reserva Resto del SEN @10s [MW]	256	316	260	319	290	304	158	218
• Reserva Zona Norte Grande [%]	30	28	31	20	23	25	43	36
• Reserva Resto del SEN [%]	70	72	69	80	77	75	57	64
Inercia Total [MVAs]	45.958	65.223	39.110	52.075	52.386	38.755	52.477	64.145
Inercia Zona Norte Grande [MVAs]	1 3.004	13.599	1 0.735	8.804	11.772	1 1.213	1 6.566	1 9.433
Inercia Resto del SEN [MVAs]	32.95 ₄	51.624	28.37 5	43.271	40.615	27.54 ²	35.911	44.71 ₁
Principales transferencias en 500kV								
• TRANSF KIMAL → LCHAN 2x500kV [MW]	-518	-7 27	-472	- 5 65	-97	- <mark>3</mark> 27	- 2 45	- <mark>2</mark> 53
• TRANSF LCHAN → CUMB 2x500kV [MW]	-435	-643	- <mark>3</mark> 69	-532	1 <mark>9</mark> 9	-117	100	2 <mark>2</mark> 5
• TRANSF NPAZU → POL 2x500kV [MW]	-478	-916	2 <mark>2</mark> 8	222	1.067	512	-133	4 <mark>82</mark>
 TRANSF ANCOA → A.JAH 4x500kV [MW] 	1.680	2.472	1.175	1.620	646	814	1.196	1.288
• TRANSF CHARR → NORTE 3x500kV [MW]	625	1.350	2 <mark>5</mark> 8	644	404	587	8 <mark>00</mark>	7 60
Generacion en principales zonas						-	_	
GEN SINCRONICA ANCOA [MW]	930	1.044	904	992	402	215	360	799
• GEN CHARRUA [MW]	1.298	2.908	901	1.898	1.5 79	1 .048	1.812	1.930
GEN SAN LUIS [MW]	757	1 .087	397	1 .027	1 .087	757	757	1 .087
GEN VENTANAS [MW]	156	722	150	200	610	215	420	760
GEN GUACOLDA [MW]	600	600	320	225	335	390	560	600
• GEN TEN [MW]	375	599	375	375	375	375	603	552
GEN KAPATUR [MW]	520	520	520	520	520	520	520	750
GEN CHACAYA [MW]	320	160	140	120	325	290	310	320
GEN CRUCERO [MW]	600	610	360	190	615	420	995	1 .007
GEN Eólicos Norte Grande [MW]	71	0	101	162	182	121	0	121
GEN Fotovoltaicos Norte Grande [MW]	0	0	583	622	699	466	0	0
GEN Eólicos Resto del SEN [MW]	422	0	632	1 .073	1 .121	770	0	1.160
GEN Fotovoltaicos Resto del SEN [MW]	0	0	953	1 .140	1. 200	862	0	0

Tabla 2-13. Resumen Escenarios 2023

ID escenario	1	2	3	4	5	6	7	8	
Hidrología		HÚN	/IEDA			SE	CA		
Demanda	Baja	Alta	Baja	Alta	Alta	Baja	Baja	Alta	
Horario	No	che		D	ía	'a		Noche	
Generacion Total [MW]	8.614	11.838	8.573	11.720	11.720	8.548	8.589	11.706	
HIDRAULICO (embalse) [%]	34	34	27	27	15	16	22	20	
• HIDRAULICO (pasada) [%]	16	16	16	16	10	10	10	9	
• TERMICO [%]	45	51	30	32	47	48	68	58	
• EOLICO [%]	6	0	9	11	12	11	0	13	
• SOLAR [%]	0	0	18	15	16	16	0	0	
Reserva Efectiva TOTAL @10s [MW]	376	424	356	378	419	426	251	360	
• Reserva Zona Norte Grande @10s [MW]	60	70	65	28	77	52	69	73	
Reserva BESS Zona Norte Grande [MW]	51	51	51	51	51	51	51	51	
• Reserva Resto del SEN @10s [MW]	265	303	241	300	290	322	130	236	
• Reserva Zona Norte Grande [%]	29	29	32	21	31	24	48	35	
• Reserva Resto del SEN [%]	71	71	68	79	69	76	52	65	
Inercia Total [MVAs]	46.229	66.251	39.875	52.079	55.451	41.078	52.624	64.816	
Inercia Zona Norte Grande [MVAs]	1 3.004	13.599	1 0.735	8.804	1 4.837	1 1.213	1 6.566	1 9.433	
Inercia Resto del SEN [MVAs]	33.22 5	52.653	29.141	43.275	40.61 5	29.86 ₆	36.05 8	45.383	
Principales transferencias en 500kV									
• TRANSF KIMAL → LCHAN 2x500kV [MW]	- 5 33	-747	-489	-5 86	46	- <mark>3</mark> 48	- 2 56	- <mark>2</mark> 62	
• TRANSF LCHAN → CUMB 2x500kV [MW]	-467	-681	-401	-571	3 <mark>78</mark>	-159	78	2 <mark>0</mark> 0	
• TRANSF NPAZU → POL 2x500kV [MW]	-524	-988	1 <mark>7</mark> 9	1 <mark>5</mark> 6	1.170	5 <mark>26</mark>	-182	5 <mark>43</mark>	
• TRANSF ANCOA → A.JAH 4x500kV [MW]	1.661	2.598	1.297	1.595	6 81	702	1.290	1.264	
• TRANSF CHARR → NORTE 3x500kV [MW]	628	1.409	375	668	436	476	7 61	715	
Generacion en principales zonas									
GEN SINCRONICA ANCOA [MW]	950	1 .084	897	958	402	215	505	799	
• GEN CHARRUA [MW]	1.298	3.108	1 .036	1.946	1.573	1.009	1.863	1.930	
GEN SAN LUIS [MW]	757	1 .087	397	1 .027	1 .087	757	757	1 .087	
GEN VENTANAS [MW]	199	718	150	200	610	149	430	760	
GEN GUACOLDA [MW]	600	600	320	225	335	400	560	600	
• GEN TEN [MW]	375	599	375	375	375	375	603	546	
• GEN KAPATUR [MW]	520	520	520	520	520	520	520	750	
GEN CHACAYA [MW]	320	160	140	120	325	280	320	320	
GEN CRUCERO [MW]	600	610	360	190	835	420	995	1.007	
GEN Eólicos Norte Grande [MW]	71	0	101	162	182	121	0	141	
GEN Fotovoltaicos Norte Grande [MW]	0	0	583	622	699	466	0	0	
GEN Eólicos Resto del SEN [MW]	422	0	632	1 .073	1 .240	832	0	1. <mark>382</mark>	
GEN Fotovoltaicos Resto del SEN [MW]	0	0	953	1 .140	1 .200	859	0	0	

A partir de los casos base se generarán múltiples escenarios de operación, ya sea para aumentar la criticidad de estos teniendo como objetivo maximizar/minimizar los flujos por cada uno de los enlaces evaluados o modificar algún factor determinante para el análisis como pueden ser el control de tensión, inercia, reservas, etc.

2.4 Tensiones de Servicio

Para la definición de las tensiones de servicio, a considerar en el presente estudio como información de entrada, se adoptan las indicadas en la última revisión del *"Estudio de Tensiones de Servicio"*, publicado por el Coordinador (ETS junio 2018 [9]). A su vez, para las barras que no presentan una tensión de servicio definida, se adopta una tensión de servicio coherente con la barra adyacente más cercana en la cual se encuentre definido este valor.

S/E Los Changos 500kV 500 Alfalfal 226 S/E Cumbre 500kV 512 Los Almendros 224 S/E Nueva Cardones 500kV 512 Rapel 222 S/E Nueva Maitencillo 500kV 512 Alto Melipilla 226 S/E Nueva Pan de Azúcar 500kV 504 Maipo 224 S/E Lo Aguirre 500 Candelaria 226 S/E Alto Jahuel 500kV 500 Puente Negro 224 S/E Lo Aguirre 500 Colbún 224 S/E Alto Jahuel 500kV 510 Colbún 224 S/E Ancoa 500kV 510 Machicura 226 S/E Charrua 500kV 510 Machicura 226 Zona Norte Grande 220 Ancoa 226 Diego de Almagro 224 Pehuenche 226 Francisco 226 Loma Alta 228 Cachiyuual 226 Loma Alta 228 Cariria 226 Charrúa 226 Carrera Pinto 224 El To	Subestación	Tensión de servicio [kV]	Subestación	Tensión de servicio [kV]
S/E Nueva Cardones 500kV 512 Rapel 222 S/E Nueva Maitencillo 500kV 512 Alto Melipilla 226 S/E Nueva Pan de Azúcar 500kV 504 Maipo 224 S/E Lo Aguirre 500 Candelaria 226 S/E Lo Aguirre 500 Puente Negro 224 S/E Ancoa 500kV 500 Puente Negro 224 S/E Charrua 500kV 510 Machicura 226 Zona Norte Grande 220 Ancoa 226 Diego de Almagro 224 Pehuenche 226 Francisco 226 Loma Alta 228 Cachiyual 226 Itahue 224 Paposo 228 Charrúa 226 Carrera Pinto 224 El Toro 230 San Andrés 224 Quilleco 226 Cardones 224 Quilleco 226 Nueva Cardones 224 Pangue 230 Maitencillo 226 Ralco 230 <	S/E Los Changos 500kV	500	Alfalfal	226
S/E Nueva Maitencillo 500kV 512 Alto Melipilla 226 S/E Nueva Pan de Azúcar 500kV 512 Quelentaro 226 S/E Dojaico 500kV 504 Maipo 224 S/E Lo Aguirre 500 Candelaria 226 S/E Ancoa 500kV 500 Puente Negro 224 S/E Charrua 500kV 510 Machicura 226 Charda 226 Loma Alta 228 Cardancre 228 Charrua 226 Cachiyual 224 El To	S/E Cumbre 500kV	512	Los Almendros	224
S/E Nueva Pan de Azúcar 500kV 512 Quelentaro 226 S/E Polpaico 500kV 504 Maipo 224 S/E Lo Aguirre 500 Candelaria 226 S/E Alto Jahuel 500kV 500 Puente Negro 224 S/E Ancoa 500kV 510 Colbún 224 S/E Charrua 500kV 510 Machicura 226 Zona Norte Grande 220 Ancoa 226 Diego de Almagro 224 Pehuenche 226 Francisco 226 Loma Alta 228 Cachiyuual 226 Itahue 224 Paposo 228 Charrúa 226 Carrera Pinto 224 El Toro 230 San Andrés 224 Antuco 228 Cardones 224 Quilleco 226 Nueva Cardones 224 Pangue 230 Maitencillo 226 Rucé 226 Sueva Maitencillo 226 Rucé 226 Guacol	S/E Nueva Cardones 500kV	512	Rapel	222
S/E Polpaico 500kV 504 Maipo 224 S/E Lo Aguirre 500 Candelaria 226 S/E Alto Jahuel 500kV 500 Puente Negro 224 S/E Ancoa 500kV 510 Colbún 224 S/E Charrua 500kV 510 Machicura 226 Zona Norte Grande 220 Ancoa 226 Diego de Almagro 224 Pehuenche 226 Francisco 226 Loma Alta 228 Cachiyuual 226 Itahue 224 Paposo 228 Charrúa 226 Carrera Pinto 224 El Toro 230 San Andrés 224 Antuco 228 Carrera Pinto 224 El Toro 230 San Andrés 224 Antuco 228 Carrera Pinto 224 Pangue 230 Maitencillo 226 Ralco 230 Maitencillo 226 Ralco 230 Nueva Maitencillo	S/E Nueva Maitencillo 500kV	512	Alto Melipilla	226
S/E Lo Aguirre 500 Candelaria 226 S/E Alto Jahuel 500kV 500 Puente Negro 224 S/E Ancoa 500kV 510 Colbún 224 S/E Charrua 500kV 510 Machicura 226 Zona Norte Grande 220 Ancoa 226 Diego de Almagro 224 Pehuenche 226 Francisco 226 Loma Alta 228 Cachiyuual 226 Itahue 224 Paposo 228 Charrúa 226 Carrera Pinto 224 El Toro 230 San Andrés 224 Antuco 228 Cardones 224 Antuco 228 Cardones 224 Quilleco 226 Nueva Cardones 224 Pangue 230 Maitencillo 226 Ralco 230 Mueva Maitencillo 226 Rucúe 226 Guacolda 228 Mampil 228 Pun Héctor 228	S/E Nueva Pan de Azúcar 500kV	512	Quelentaro	226
S/E Alto Jahuel 500kV 500 Puente Negro 224 S/E Ancoa 500kV 510 Colbún 224 S/E Charrua 500kV 510 Machicura 226 Zona Norte Grande 220 Ancoa 226 Diego de Almagro 224 Pehuenche 226 Francisco 226 Loma Alta 228 Cachiyuual 226 Itahue 224 Paposo 228 Charrúa 226 Carrera Pinto 224 El Toro 230 San Andrés 224 Antuco 228 Cardones 224 Antuco 228 Cardones 224 Antuco 228 Nueva Cardones 224 Pangue 230 Maitencillo 226 Ralco 230 Nueva Maitencillo 226 Rucúe 226 Guacolda 228 Mampil 228 Pon Héctor 228 Peuchén 228 Punta Colorada 228	S/E Polpaico 500kV	504	Maipo	224
S/E Ancoa 500kV 510 Colbún 224 S/E Charrua 500kV 510 Machicura 226 Zona Norte Grande 220 Ancoa 226 Diego de Almagro 224 Pehuenche 226 Francisco 226 Loma Alta 228 Cachiyuual 226 Itahue 224 Paposo 228 Charrúa 226 Carrera Pinto 224 El Toro 230 San Andrés 224 Antuco 228 Cardones 224 Quilleco 226 Nueva Cardones 224 Pangue 230 Maitencillo 226 Ralco 230 Nueva Cardones 224 Pangue 230 Nueva Maitencillo 226 Rucúe 226 Guacolda 228 Mampil 228 Punta Colorada 228 Peuchén 228 Punta Colorada 228 Punta Colorada 228 Lagunillas 224	S/E Lo Aguirre	500	Candelaria	226
S/E Charrua 500kV 510 Machicura 226 Zona Norte Grande 220 Ancoa 226 Diego de Almagro 224 Pehuenche 226 Francisco 226 Loma Alta 228 Cachiyuual 226 Itahue 224 Paposo 228 Charrúa 226 Carrera Pinto 224 El Toro 230 San Andrés 224 Antuco 228 Cardones 224 Antuco 228 Cardones 224 Pangue 230 Nueva Cardones 224 Pangue 230 Nueva Cardones 224 Pangue 230 Nueva Maitencillo 226 Ralco 233 Nueva Maitencillo 226 Rucúe 226 Guacolda 228 Mampil 228 Punta Colorada 228 Peuchén 228 Punta Colorada 228 Concepción 226 Pan de Azúcar 228	S/E Alto Jahuel 500kV	500	Puente Negro	224
Zona Norte Grande 220 Ancoa 226 Diego de Almagro 224 Pehuenche 226 Francisco 226 Loma Alta 228 Cachiyuual 226 Itahue 224 Paposo 228 Charrúa 226 Carrera Pinto 224 El Toro 230 San Andrés 224 Antuco 228 Cardones 224 Quilleco 226 Nueva Cardones 224 Pangue 230 Maitencillo 226 Ralco 230 Nueva Maitencillo 226 Rucúe 226 Guacolda 228 Mampil 228 Don Héctor 228 Peuchén 228 Punta Colorada 228 Peuchén 228 Punta Colorada 228 Peuchén 224 Don Goyo 230 Lagunillas 224 La Cebada 230 Bocamina 224 Las Palmas 228 Santa Fe	S/E Ancoa 500kV	510	Colbún	224
Diego de Almagro 224 Pehuenche 226 Francisco 226 Loma Alta 228 Cachiyuual 226 Itahue 224 Paposo 228 Charrúa 226 Carrera Pinto 224 El Toro 230 San Andrés 224 Antuco 228 Cardones 224 Quilleco 226 Rueva Cardones 224 Pangue 230 Maitencillo 226 Ralco 230 Nueva Cardones 224 Pangue 230 Nueva Maitencillo 226 Ralco 230 Nueva Maitencillo 226 Rucúe 226 Guacolda 228 Mampil 228 Don Héctor 228 Peuchén 228 Punta Colorada 228 Peuchén 228 Pan de Azúcar 228 Hualpén 224 La Cebada 230 Bocamina 224 Las Palmas 228 Santa Fe <td>S/E Charrua 500kV</td> <td>510</td> <td>Machicura</td> <td>226</td>	S/E Charrua 500kV	510	Machicura	226
Francisco 226 Loma Alta 228 Cachiyuual 226 Itahue 224 Paposo 228 Charrúa 226 Carrera Pinto 224 El Toro 230 San Andrés 224 Antuco 228 Cardones 224 Quilleco 226 Nueva Cardones 224 Pangue 230 Maitencillo 226 Ralco 230 Nueva Maitencillo 226 Rucúe 226 Guacolda 228 Mampil 228 Don Héctor 228 Peuchén 228 Punta Colorada 228 Concepción 226 Pan de Azúcar 228 Hualpén 224 Don Goyo 230 Lagunillas 224 La Cebada 230 Bocamina 224 Las Palmas 228 Santa Fe 226 Los Vilos 226 Santa María 226 Choapa 226 Mulchén <td< td=""><td>Zona Norte Grande</td><td>220</td><td>Ancoa</td><td>226</td></td<>	Zona Norte Grande	220	Ancoa	226
Cachiyuual 226 Itahue 224 Paposo 228 Charrúa 226 Carrera Pinto 224 El Toro 230 San Andrés 224 Antuco 228 Cardones 224 Quilleco 226 Nueva Cardones 224 Pangue 230 Maitencillo 226 Ralco 230 Nueva Maitencillo 226 Rucúe 226 Guacolda 228 Mampil 228 Don Héctor 228 Peuchén 228 Punta Colorada 228 Concepción 226 Pan de Azúcar 228 Hualpén 224 Don Goyo 230 Lagunillas 224 La Cebada 230 Bocamina 224 La S Palmas 228 Santa Fe 226 Los Vilos 226 Santa María 226 Choapa 226 Mulchén 230 Nogales 226 Duqueco 22	Diego de Almagro	224	Pehuenche	226
Paposo 228 Charrúa 226 Carrera Pinto 224 El Toro 230 San Andrés 224 Antuco 228 Cardones 224 Quilleco 226 Nueva Cardones 224 Pangue 230 Maitencillo 226 Ralco 230 Nueva Maitencillo 226 Rucúe 226 Guacolda 228 Mampil 228 Don Héctor 228 Peuchén 228 Punta Colorada 228 Concepción 226 Pan de Azúcar 228 Hualpén 224 Don Goyo 230 Lagunillas 224 La Cebada 230 Bocamina 224 La Cebada 230 Bocamina 224 Las Palmas 228 Santa Fe 226 Los Vilos 226 Santa María 226 Choapa 226 Mulchén 230 Nogales 226 Duqueco 22	Francisco	226	Loma Alta	228
Carrera Pinto 224 El Toro 230 San Andrés 224 Antuco 228 Cardones 224 Quilleco 226 Nueva Cardones 224 Pangue 230 Maitencillo 226 Ralco 230 Nueva Maitencillo 226 Rucúe 226 Guacolda 228 Mampil 228 Don Héctor 228 Peuchén 228 Punta Colorada 228 Concepción 226 Pan de Azúcar 228 Hualpén 224 Don Goyo 230 Lagunillas 224 La Cebada 230 Bocamina 224 Las Palmas 228 Santa Fe 226 Los Vilos 226 Santa María 226 Choapa 226 Mulchén 230 Nogales 226 Duqueco 226 Ventanas 228 Los Peumos 228 Quillota 226 Temuco	Cachiyuual	226	Itahue	224
San Andrés 224 Antuco 228 Cardones 224 Quilleco 226 Nueva Cardones 224 Pangue 230 Maitencillo 226 Ralco 230 Nueva Maitencillo 226 Rucúe 226 Guacolda 228 Mampil 228 Don Héctor 228 Peuchén 228 Punta Colorada 228 Concepción 226 Pan de Azúcar 228 Hualpén 224 Don Goyo 230 Lagunillas 224 La Cebada 230 Bocamina 224 Las Palmas 228 Santa Fe 226 Los Vilos 226 Santa María 226 Choapa 226 Mulchén 230 Nogales 226 Duqueco 226 Ventanas 228 Los Peumos 228 Quillota 226 Temuco 228 San Luis 228 Cautín 230 <td>Paposo</td> <td>228</td> <td>Charrúa</td> <td>226</td>	Paposo	228	Charrúa	226
Cardones 224 Quilleco 226 Nueva Cardones 224 Pangue 230 Maitencillo 226 Ralco 230 Nueva Maitencillo 226 Rucúe 226 Guacolda 228 Mampil 228 Don Héctor 228 Peuchén 228 Punta Colorada 228 Concepción 226 Pan de Azúcar 228 Hualpén 224 Don Goyo 230 Lagunillas 224 La Cebada 230 Bocamina 224 Las Palmas 228 Santa Fe 226 Los Vilos 226 Santa María 226 Choapa 226 Mulchén 230 Nogales 226 Duqueco 226 Ventanas 228 Los Peumos 228 Quillota 226 Temuco 228 San Luis 228 Cautín 230 Agua Santa 226 Ciruelos 232<	Carrera Pinto	224	El Toro	230
Nueva Cardones 224 Pangue 230 Maitencillo 226 Ralco 230 Nueva Maitencillo 226 Rucúe 226 Guacolda 228 Mampil 228 Don Héctor 228 Peuchén 228 Punta Colorada 228 Concepción 226 Pan de Azúcar 228 Hualpén 224 Don Goyo 230 Lagunillas 224 La Cebada 230 Bocamina 224 Las Palmas 228 Santa Fe 226 Los Vilos 226 Santa María 226 Choapa 226 Mulchén 230 Nogales 226 Duqueco 226 Ventanas 228 Los Peumos 228 Quillota 226 Temuco 228 San Luis 228 Cautín 230 Agua Santa 226 Ciruelos 232 Polpaico 224 Valdivia 228<	San Andrés	224	Antuco	228
Maitencillo 226 Ralco 230 Nueva Maitencillo 226 Rucúe 226 Guacolda 228 Mampil 228 Don Héctor 228 Peuchén 228 Punta Colorada 228 Concepción 226 Pan de Azúcar 228 Hualpén 224 Don Goyo 230 Lagunillas 224 La Cebada 230 Bocamina 224 Las Palmas 228 Santa Fe 226 Los Vilos 226 Santa María 226 Choapa 226 Mulchén 230 Nogales 226 Duqueco 226 Ventanas 228 Los Peumos 228 Quillota 226 Temuco 228 San Luis 228 Cautín 230 Agua Santa 226 Ciruelos 232 Polpaico 224 Valdivia 228 Los Maquis 224 Nueva Valdivia	Cardones	224	Quilleco	226
Nueva Maitencillo 226 Rucúe 226 Guacolda 228 Mampil 228 Don Héctor 228 Peuchén 228 Punta Colorada 228 Concepción 226 Pan de Azúcar 228 Hualpén 224 Don Goyo 230 Lagunillas 224 La Cebada 230 Bocamina 224 Las Palmas 228 Santa Fe 226 Los Vilos 226 Santa María 226 Choapa 226 Mulchén 230 Nogales 226 Duqueco 226 Ventanas 228 Los Peumos 228 Quillota 226 Temuco 228 San Luis 228 Cautín 230 Agua Santa 226 Ciruelos 232 Polpaico 224 Valdivia 228 Los Maquis 224 Nueva Valdivia 228 El Salto 224 Pichirropulli	Nueva Cardones	224	Pangue	230
Guacolda 228 Mampil 228 Don Héctor 228 Peuchén 228 Punta Colorada 228 Concepción 226 Pan de Azúcar 228 Hualpén 224 Don Goyo 230 Lagunillas 224 La Cebada 230 Bocamina 224 Las Palmas 228 Santa Fe 226 Los Vilos 226 Santa María 226 Choapa 226 Mulchén 230 Nogales 226 Duqueco 226 Ventanas 228 Los Peumos 228 Quillota 226 Temuco 228 San Luis 228 Cautín 230 Agua Santa 226 Ciruelos 232 Polpaico 224 Valdivia 228 Los Maquis 224 Nueva Valdivia 228 El Salto 224 Pichirropulli 230 Cerro Navia 224 Rahue 2	Maitencillo	226	Ralco	230
Don Héctor 228 Peuchén 228 Punta Colorada 228 Concepción 226 Pan de Azúcar 228 Hualpén 224 Don Goyo 230 Lagunillas 224 La Cebada 230 Bocamina 224 Las Palmas 228 Santa Fe 226 Los Vilos 226 Santa María 226 Choapa 226 Mulchén 230 Nogales 226 Duqueco 226 Ventanas 228 Los Peumos 228 Quillota 226 Temuco 228 San Luis 228 Cautín 230 Agua Santa 226 Ciruelos 232 Polpaico 224 Valdivia 228 Los Maquis 224 Nueva Valdivia 228 El Salto 224 Pichirropulli 230 Cerro Navia 224 Rahue 230	Nueva Maitencillo	226	Rucúe	226
Punta Colorada 228 Concepción 226 Pan de Azúcar 228 Hualpén 224 Don Goyo 230 Lagunillas 224 La Cebada 230 Bocamina 224 Las Palmas 228 Santa Fe 226 Los Vilos 226 Santa María 226 Choapa 226 Mulchén 230 Nogales 226 Duqueco 226 Ventanas 228 Los Peumos 228 Quillota 226 Temuco 228 San Luis 228 Cautín 230 Agua Santa 226 Ciruelos 232 Polpaico 224 Valdivia 228 Los Maquis 224 Nueva Valdivia 228 El Salto 224 Pichirropulli 230 Cerro Navia 224 Rahue 230	Guacolda	228	Mampil	228
Pan de Azúcar 228 Hualpén 224 Don Goyo 230 Lagunillas 224 La Cebada 230 Bocamina 224 Las Palmas 228 Santa Fe 226 Los Vilos 226 Santa María 226 Choapa 226 Mulchén 230 Nogales 226 Duqueco 226 Ventanas 228 Los Peumos 228 Quillota 226 Temuco 228 San Luis 228 Cautín 230 Agua Santa 226 Ciruelos 232 Polpaico 224 Valdivia 228 Los Maquis 224 Nueva Valdivia 228 El Salto 224 Pichirropulli 230 Cerro Navia 224 Rahue 230	Don Héctor	228	Peuchén	228
Don Goyo 230 Lagunillas 224 La Cebada 230 Bocamina 224 Las Palmas 228 Santa Fe 226 Los Vilos 226 Santa María 226 Choapa 226 Mulchén 230 Nogales 226 Duqueco 226 Ventanas 228 Los Peumos 228 Quillota 226 Temuco 228 San Luis 228 Cautín 230 Agua Santa 226 Ciruelos 232 Polpaico 224 Valdivia 228 Los Maquis 224 Nueva Valdivia 228 El Salto 224 Pichirropulli 230 Cerro Navia 224 Rahue 230	Punta Colorada	228	Concepción	226
La Cebada 230 Bocamina 224 Las Palmas 228 Santa Fe 226 Los Vilos 226 Santa María 226 Choapa 226 Mulchén 230 Nogales 226 Duqueco 226 Ventanas 228 Los Peumos 228 Quillota 226 Temuco 228 San Luis 228 Cautín 230 Agua Santa 226 Ciruelos 232 Polpaico 224 Valdivia 228 Los Maquis 224 Nueva Valdivia 228 El Salto 224 Pichirropulli 230 Cerro Navia 224 Rahue 230	Pan de Azúcar	228	Hualpén	224
La Cebada 230 Bocamina 224 Las Palmas 228 Santa Fe 226 Los Vilos 226 Santa María 226 Choapa 226 Mulchén 230 Nogales 226 Duqueco 226 Ventanas 228 Los Peumos 228 Quillota 226 Temuco 228 San Luis 228 Cautín 230 Agua Santa 226 Ciruelos 232 Polpaico 224 Valdivia 228 Los Maquis 224 Nueva Valdivia 228 El Salto 224 Pichirropulli 230 Cerro Navia 224 Rahue 230	Don Goyo	230	Lagunillas	224
Los Vilos 226 Santa María 226 Choapa 226 Mulchén 230 Nogales 226 Duqueco 226 Ventanas 228 Los Peumos 228 Quillota 226 Temuco 228 San Luis 228 Cautín 230 Agua Santa 226 Ciruelos 232 Polpaico 224 Valdivia 228 Los Maquis 224 Nueva Valdivia 228 El Salto 224 Pichirropulli 230 Cerro Navia 224 Rahue 230		230	Bocamina	224
Choapa 226 Mulchén 230 Nogales 226 Duqueco 226 Ventanas 228 Los Peumos 228 Quillota 226 Temuco 228 San Luis 228 Cautín 230 Agua Santa 226 Ciruelos 232 Polpaico 224 Valdivia 228 Los Maquis 224 Nueva Valdivia 228 El Salto 224 Pichirropulli 230 Cerro Navia 224 Rahue 230	Las Palmas	228	Santa Fe	226
Nogales 226 Duqueco 226 Ventanas 228 Los Peumos 228 Quillota 226 Temuco 228 San Luis 228 Cautín 230 Agua Santa 226 Ciruelos 232 Polpaico 224 Valdivia 228 Los Maquis 224 Nueva Valdivia 228 El Salto 224 Pichirropulli 230 Cerro Navia 224 Rahue 230	Los Vilos	226	Santa María	226
Ventanas 228 Los Peumos 228 Quillota 226 Temuco 228 San Luis 228 Cautín 230 Agua Santa 226 Ciruelos 232 Polpaico 224 Valdivia 228 Los Maquis 224 Nueva Valdivia 228 El Salto 224 Pichirropulli 230 Cerro Navia 224 Rahue 230	Choapa	226	Mulchén	230
Quillota 226 Temuco 228 San Luis 228 Cautín 230 Agua Santa 226 Ciruelos 232 Polpaico 224 Valdivia 228 Los Maquis 224 Nueva Valdivia 228 El Salto 224 Pichirropulli 230 Cerro Navia 224 Rahue 230	Nogales	226	Duqueco	226
San Luis 228 Cautín 230 Agua Santa 226 Ciruelos 232 Polpaico 224 Valdivia 228 Los Maquis 224 Nueva Valdivia 228 El Salto 224 Pichirropulli 230 Cerro Navia 224 Rahue 230	Ventanas	228	Los Peumos	228
Agua Santa 226 Ciruelos 232 Polpaico 224 Valdivia 228 Los Maquis 224 Nueva Valdivia 228 El Salto 224 Pichirropulli 230 Cerro Navia 224 Rahue 230	Quillota	226	Temuco	228
Polpaico 224 Valdivia 228 Los Maquis 224 Nueva Valdivia 228 El Salto 224 Pichirropulli 230 Cerro Navia 224 Rahue 230	San Luis	228	Cautín	230
Los Maquis 224 Nueva Valdivia 228 El Salto 224 Pichirropulli 230 Cerro Navia 224 Rahue 230	Agua Santa	226	Ciruelos	232
El Salto 224 Pichirropulli 230 Cerro Navia 224 Rahue 230	Polpaico	224	Valdivia	228
El Salto 224 Pichirropulli 230 Cerro Navia 224 Rahue 230	Los Maquis	224	Nueva Valdivia	228
		224	Pichirropulli	230
Lo Aguirre 222 Puerto Montt 229	Cerro Navia	224	Rahue	230
LO AGUITE ZZZ	Lo Aguirre	222	Puerto Montt	228
Chena 224 Melipulli 228		224	Melipulli	228
Alto Jahuel 224 Canutillar 226	Alto Jahuel	224	Canutillar	226
Buín 224 Chiloé 230	Buín	224	Chiloé	230

Tabla 2-14. Tensiones de servicio

3 ANÁLISIS INICIAL DE MÍNIMA INERCIA

3.1 Generalidades

Conforme a la metodología planteada, antes de iniciar los estudios propiamente tal de control de frecuencia y tensión, se realiza un análisis enfocado a determinar los montos mínimos de inercia por zona que permiten asegurar que no se presenten condiciones de inestabilidad angular/tensión ante la ocurrencia de una contingencia, específicamente la desconexión de la unidad generadora más grande de cada una de estas.

Este análisis, además de determinar los montos de inercia mencionados, también permite construir los escenarios específicos que serán el punto de partida para los posteriores estudios de control de frecuencia y tensión.

3.2 Zonas de estudio

Para la realización de este análisis se realiza una separación por zonas del sistema conforme al siguiente detalle:

- Zona Norte Grande: Instalaciones al norte de la S/E Los Changos.
- Zona Norte Chico: Instalaciones comprendidas al sur de S/E Los Changos y al norte de la S/E Polpaico.
- Zona Centro: Instalaciones comprendidas al sur de la S/E Polpaico y al norte de la S/E Charrúa.
- Zona Sur: Instalaciones al sur de la S/E Charrúa.

Vale destacar que estas zonas no necesariamente resultarán las áreas de control de tensión, las cuales se definen y analizan específicamente en Informe Parte B - CT.

Para la construcción de escenarios que contemplen inercia mínima por zona, se utilizará la metodología desarrollada, documentada en el documento principal asociado a este informe. Esta implica buscar aquel despacho dentro de los análisis PCP que contemple la menor inercia por zona. Para esta condición se realiza la salida de un máximo de 2 unidades y se valida si este presenta problemas de estabilidad angular/tensión ante una contingencia de Severidad 5 (aplicada a la unidad más grande de dicha zona).

Para todas las zonas se construirán escenarios a partir de la topología de diciembre de 2020. Esto se realiza debido a que esta contempla los casos más críticos respecto a robustez del sistema de transmisión.

3.2.1 Zona Norte Grande

Para analizar esta zona se construyen 2 Escenarios Específicos, los cuales consideran 2 unidades sincrónicas menos respecto de los despachos contemplados en los PCP. En todos los escenarios se considera una Demanda Baja e Hidrología Húmeda, con la Zona Norte Grande con tendencia a ser importadora.

La siguiente tabla resume las características de los escenarios desarrollados.

Tabla 3-1 - Resumen Escenarios de mínima inercia para la Zona Norte Grande.

Casos Mínima Inercia - ZONA NORTE GRANDE (LOS CHANGOS al norte)								
Escen	ario	CUMBRE -> LOS	CUMBRE -> LOS INERCIA [MVAs]		Generadores			
Nombre	Tipo	CHANGOS [MW]	Esc. Base	Esc. Esp.	Post-Cont	Unidad	P [MW]	INERCIA [MVAs]
						IEM	360	1879
					2368	NTO1	260	704
EE01 Hmin ZNG	DB-HH-DIA	977	6563	4247 2		ANG1	70	1584
EEU1 Amin 2NG						ANG2	139	1584
						Cerro Dominador	65	732
						Otras	32	80
						U16	360	3065
		913			2368	NTO2	130	704
EE02-Hmin ZNG	DR HILL MOCHE		7202	E 422		ANG2	270	1584
	DB-HH-NOCHE		7392	5433		ANG1	270	1584
						IEM	375	1878,5
						Otras	32	80

Estos se detallan brevemente a continuación:

- <u>EE01 Hmin ZNG</u>: se considera un escenario de día, con penetración ERNC alta, transferencias de 977 MW a través del enlace CUM→LCH 2x500kV, se prevé que este tipo de escenarios se dé entre las 13:00 y 17:00 hrs. El escenario PCP contempla las siguientes unidades representativas operativas en la Zona, de las cuales se muestran tachadas aquellas que se seleccionaron para dejar fuera de servicio para construir el escenario de mínima inercia:
 - o IEM
 - o NTO1
 - o ANG1
 - → ANG2

Lo anterior implica que el escenario contempla una inercia en la zona equivalente a **4247MVAs** en operación normal y 2368MVAs en red N-1 (considerando la desconexión de la CT IEM 375MW).

- <u>EE02 Hmin_ZNG</u>: se considera un escenario de noche, con baja penetración de ERNC (solo parques eólicos), transferencias de 913MW a través del enlace CUM→LCH 2x500kV. El escenario PCP contempla las siguientes unidades representativas operativas en la Zona, de las cuales se muestran tachadas aquellas que se seleccionaron para dejar fuera de servicio para construir el escenario de mínima inercia:
 - o U16
 - o ANG2
 - o NTO2
 - → ANG1
 - → IEM

Lo anterior implica que el escenario contempla una inercia en la zona equivalente a 5433MVAs en operación normal de 5433MVAs en red N y 2368MVAs en red N-1 (considerando la desconexión de la U16).

Para evaluar la validez de estos escenarios se procede a aplicar una contingencia de Severidad 5 en la unidad más grande perteneciente a esta zona. En este caso se realiza la desconexión de la CT IEM para el escenario EEO1 y la U16 para el EEO2.

Conforme a lo anterior, la siguiente figura muestra la evolución de las tensiones y ángulos de unidades de referenciales al aplicar dicha contingencia el escenario EE01.

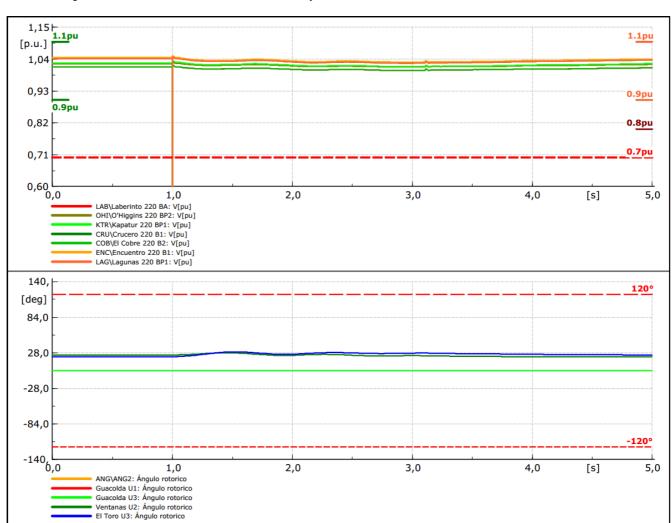


Figura 3-1 - Evolución de las tensiones en barras referenciales de la Zona Norte Grande ante Sev. 5 en la CT IEM.

Para los resultados mostrados anteriormente no se encuentran requerimientos de inercia mínima. Por otro lado, para el escenario EE02_Hmin_ZNG, se observa que la tensión transitoria en las barras cercanas a la SE Domeyko alcanzan una tensión bajo los 0.7pu. Debido a lo anterior, se busca subir la inercia para encontrar el requerimiento mínimo para esta zona.

Debido a lo anterior, al Escenario E03 se le agrega la U1 de la CT Angamos y por otro lado se prueba añadiendo la CT CTH. La siguiente figura muestra la evolución de las tensiones en la Zona Norte Grande ante la salida de la U16 a plena carga bajo tres condiciones:

- 1. Se considera la CT IEM y ANG1 fuera de servicio respecto de la condición encontrada en el despacho PCP, con una inercia de 5433MVAs en red N y 2368MVAs en red N-1.
- 2. Se considera solo la CT IEM fuera de servicio respecto de la condición encontrada en el despacho PCP, con una inercia de 7017MVAs en red N y 3952MVAs en red N-1.
- 3. Se considera CT IEM y ANG1 fuera de servicio y la CT CTH en servicio respecto de la condición encontrada en el despacho PCP, con una inercia de 6568MVAs en red N y 3503MVAs en red N-1.

A continuación se muestran las tensiones de la Zona Norte Grande y los ángulos de máquinas referenciales.

Figura 3-2 - Evolución de las tensiones en barras referenciales de la Zona Norte Grande ante Sev. 5 enla U16 – Sensibilidad EE03.

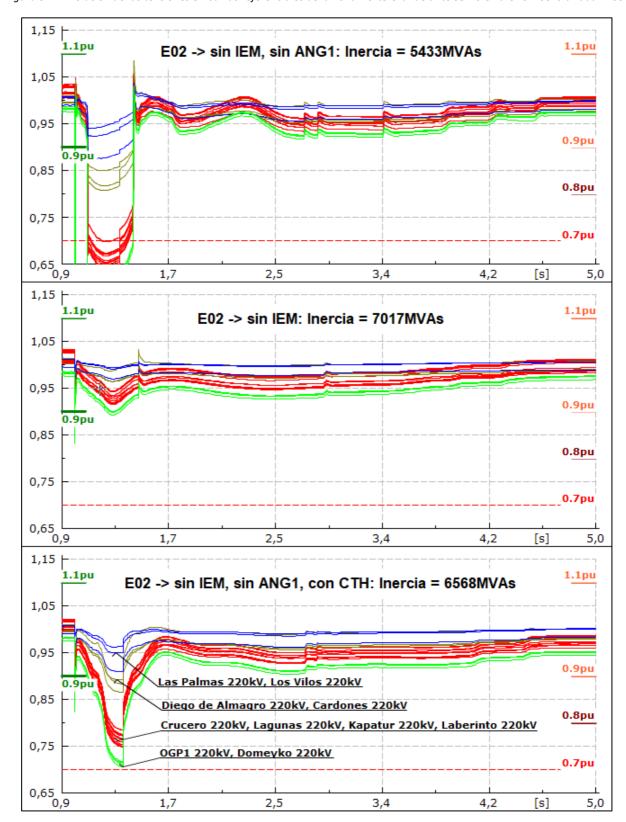
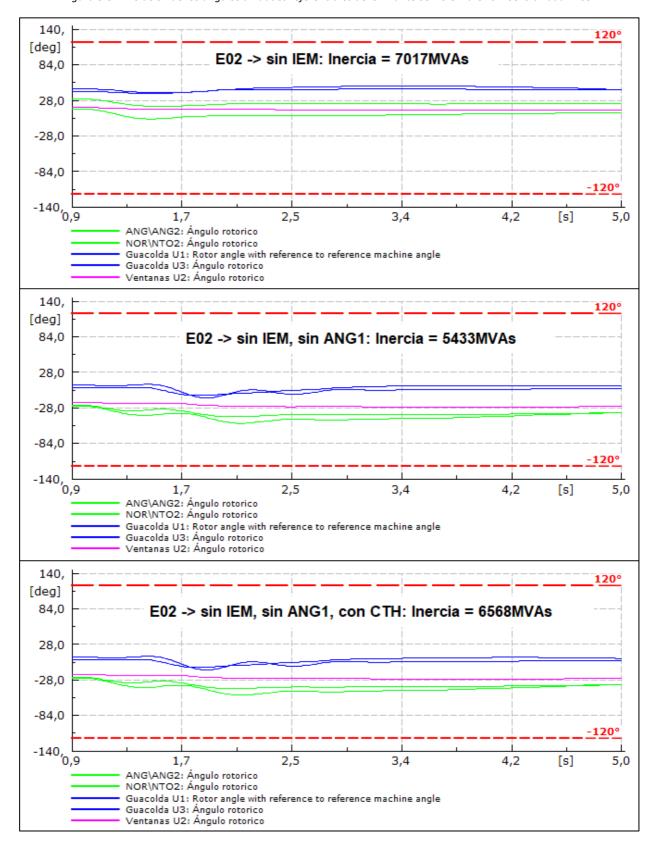



Figura 3-3 - Evolución de los ángulos unidades referenciales del SEN ante Sev. 5 en la U16 – Sensibilidad EE03.

De las simulaciones obtenidas anteriormente se encuentra una inercia mínima de ~6568MVAs. Esto se ve reflejado claramente en un fenómeno angular, el cual deprime las tensiones cercanas a la SE Domeyko. Lo anterior sugiere que este monto es sensible a los recursos dinámicos de tensión que se encuentran en la Zona.

Análisis de sensibilidad: Control rápido de frecuencia

Conforme a lo previsto en la metodología se evalúa la posibilidad de utilizar el servicio de control rápido de frecuencia para mitigar este fenómeno. Tal como se observa de las figuras precedentes y de la que se presenta a continuación, se pone en evidencia que el fenómeno de inestabilidad transitoria se presenta en tiempos mucho más rápidos que el mínimo tiempo de actuación (1 seg). Por este motivo se considera que el servicio CRF no se considera apto para dar soporte de inercia en aquellos casos en que la misma sea requerida por fenómenos de estabilidad.

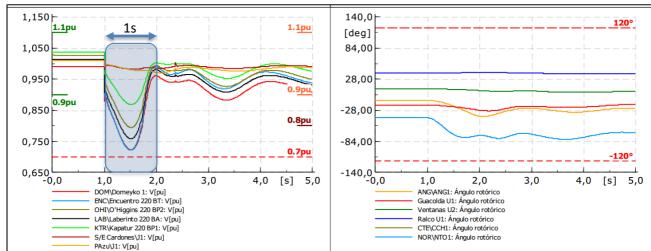


Figura 3-4 – Tensiones y ángulos ante pérdida U16 (360MW) en escenario de inercia mínima Zona Norte Grande.

Análisis de sensibilidad: Control dinámico de tensión

En este capítulo se definió una inercia mínima del Norte Grande de 6568MVAs, asociada a la pérdida de la U16 en condiciones de noche, y altas transferencias hacia esta región. El fenómeno que define esta limitación es la instabilidad en tensión que se presenta en las barras de esta ACT, principalmente en la sub-área sur (barras cercanas a Domeyko).

En este apartado se analiza el impacto de adicionar control dinámico de tensión por parte de proyectos renovables para contrarrestar este fenómeno. El aporte que se considera es por parte de los proyectos solares, contemplando que su tecnología permitiría aporte de potencia reactiva en ausencia de recurso solar (en el caso de los proyectos eólicos, sólo podrían realizar esta acción de forma controlada en todos aquellos cuya tecnología sea full-converter).

Los casos que se analizan son:

- Caso P0: Caso base de mínima inercia
- <u>Caso P1</u>: Caso base de mínima inercia sin capacitor SVC Plus

- <u>Caso P2</u>: P1 sin generación eólica y con transferencias máximas hacia norte grande (1500MW).
- <u>Caso P3</u>: P2 + proyectos solares con aporte de Q en modo falla (aporte de 2% de potencia reactiva cada 1% de caída de la tensión por debajo de 0.9pu, acorde a NTSyCS).
- <u>Caso P4</u>: P2 + proyectos solares con control dinámico de tensión (control tipo STATCOM, con tiempo de establecimiento menor al segundo).

Para los casos P3 y P4 se analizan 3 condiciones:

- o A: Con proyecto Domeyko Oeste
- B: Con proyecto Domeyko Oeste + Bolero 1
- C: Con proyecto Domeyko Oeste + Bolero 1 + Cerro Dominador

La primera figura muestra la evolución de las tensiones del norte del sistema, y las transferencias hacia el Norte Grandes, para el escenario de mínima inercia PO. Luego, la figura siguiente muestra la tensión en el nodo más afectado luego de la falla, correspondiente a las barras OGP1 para los casos PO, P1 y P2.

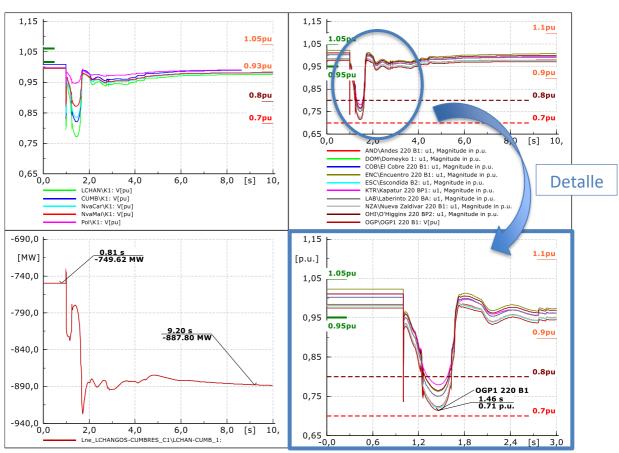


Figura 3-5: Tensiones en barras del Norte Grande – Caso Base PO.

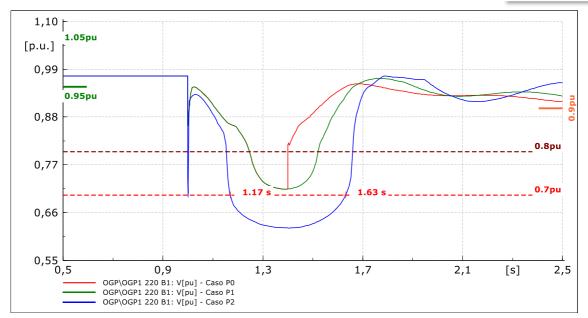


Figura 3-6: Tensiones en barras de zona Domeyko (OGP1) – Caso PO, P1 y P2.

Como se puede observar, el escenario P2 resulta en una evolución inadmisible de la tensión en las barras del Norte Grande. Sobre este escenario se generan 3 casos de análisis (casos P3), considerando proyectos fotovoltaicos en servicio para brindar soporte de tensión.

La figura siguiente muestra los resultados obtenidos, en donde para cada caso se muestra la evolución de la tensión, y la potencia reactiva aportada por los proyectos considerados (Qreal). A su vez, se muestra la potencia reactiva efectiva (Qefectiva: corriente reactiva inyectada por tensión nominal) de los mismos.

Estudio de SSCC para la Operación del SEN

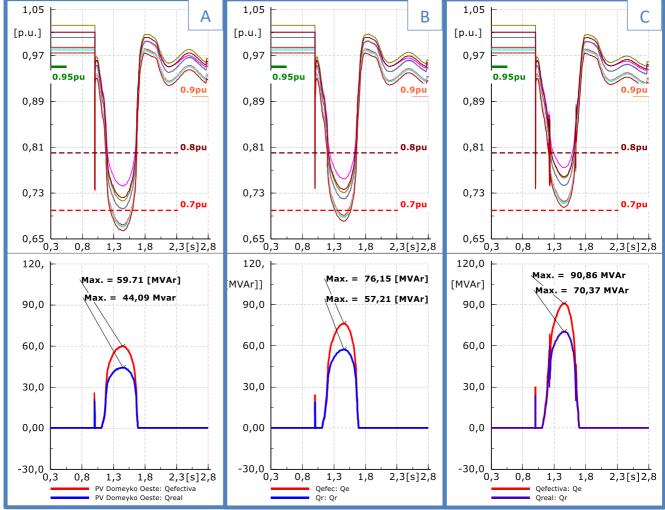


Figura 3-7: Tensiones en barras de zona Domeyko (OGP1) – Caso P3 a, b y c.

Luego, la Tabla 3-2 muestra la potencia asociada a los proyectos considerados y los aportes de potencia reactivas de los mismos.

Esc	sc caso Proyectos		S [MVA]	Total ERNC Norte Grande				
ESC	Lasu	Proyectos	3 [IVIVA]	S [MVA]	Qnom [MVAr]	Qmax iny [MVAr]		
	а	Domeyko Oeste	201	201	64	60		
Р3	b	Bolero 1	73	274	88	76		
	С	Cerro Dominador	100	374	120	91		

Tabla 3-2: Proyectos fotovoltaicos considerados en el Norte Grande.

Se puede observar que el aporte de potencia reactiva durante la falla, en ausencia de control de tensión dinámico, presenta una mejora significativa a los problemas de sub-tensión post-contingencia. En este caso, el aporte de **90MVAr** efectivos es suficiente para obtener una respuesta estable y admisible.

A partir de este caso se analiza la sensibilidad de estos resultados considerando que los proyectos presentan control dinámico de tensión (Caso P4). Se puede observar que los proyectos requeridos para lograr una respuesta admisible son los mismos. La diferencia se encuentra que en el caso de mayor disponibilidad de

Estudio de SSCC para la Operación del SEN

INFORME 4 - SSCC Control de Frecuencia y Tensión - 2020-2023

potencia reactiva, se presenta una mejor evolución de la tensión debido a que los proyectos no sólo entregan en proporción a la caída de tensión sino que lo hacen con el fin de establecer la misma a su valor inicial.

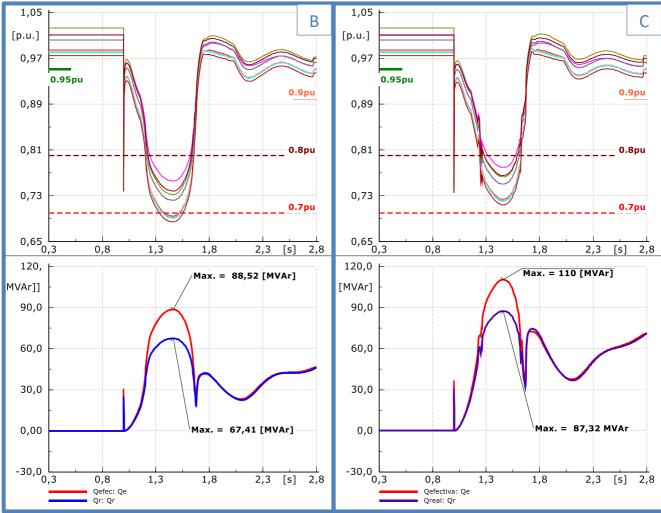


Figura 3-8: Tensiones en barras de zona Domeyko (OGP1) – Caso **P4 b y c**.

Esc	caso	Provectos	S [MVA]		Total ERNC Norte Gra	nde
LSC	caso	Troyectos	3 [IVIVA]	S [MVA]	Qnom [MVAr]	Qmax iny [MVAr]
	b	Bolero 1	73	274	88	88
P4	С	Cerro Dominador	100	374	120	110

Tabla 3-3: Proyectos fotovoltaicos considerados en el Norte Grande.

Se puede concluir que la operación con proyectos fotovoltaicos en servicio en horas de la noche brindando soporte de potencia reactiva en condiciones de falla mejora la respuesta dinámica del sistema ante eventuales condiciones de inestabilidad en tensión, específicamente en condiciones de operación con elevadas transferencias hacia el Norte Grande. Siendo que la zona más afectada se corresponde a la de Domeyko, los proyectos más eficientes para contrarrestar esto son los emplazados en el centro/sur del Norte Grande.

A pesar de que el soporte de potencia reactiva resultó suficiente, en condiciones de elevado despacho de activo esto puede generar una reducción de la potencia activa para priorizar la reactiva. Esto puede acentuar la

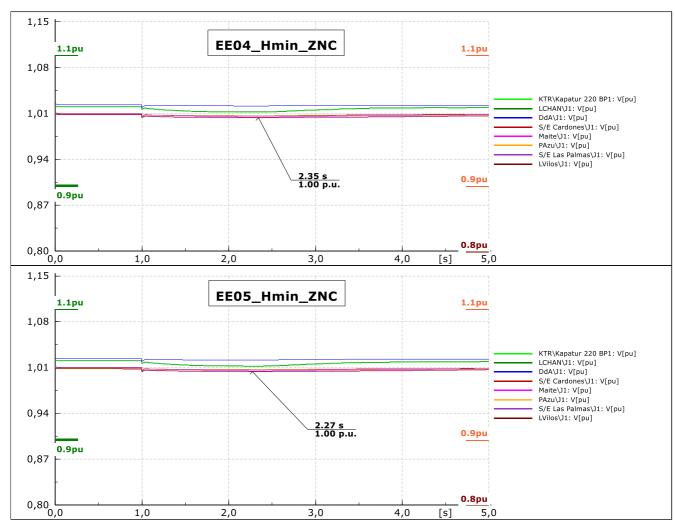
problemática local por lo que se recomienda la operación con equipos que operen en modo control dinámico de tensión.

En escenarios con menor inercia en el norte grande, la adición de este tipo de control renovable deriva en la no convergencia de las simulaciones dinámicas, lo cual está asociado a la inyección de grandes montos de corriente reactiva en condiciones de baja potencia de cortocircuito en la zona. Por ende, en condiciones de menor inercia a la mínima definida, se encuentra que el salto de potencia activa generado en la zona post-contingencia conlleva a condiciones de inestabilidad que no son factibles de ser salvadas mediante el reemplazo de esta inercia por control de tensión dinámico de proyectos renovables.

3.2.2 Zona Norte Chico

Para encontrar la inercia mínima y construir el escenario específico asociado a la Zona del Norte Chico se utiliza como partida el despacho PCP que considere la mínima cantidad de máquinas sincrónicas en dicha zona y, en esta condición, se estudia la operación con 2 unidades sincrónicas menos.

A partir de esto se construyen 2 Escenarios Específicos, los cuales consideran la salida de 2 unidades sincrónicas, en este caso la U4 y U5 de la CT Guacolda. Estos se detallan brevemente a continuación:


- <u>EE04 Hmin ZNC</u>: se considera un escenario solo con la unidad 1 de la CT Guacolda en servicio, Demanda Baja, de noche y con baja penetración de parques eólicos. Como solo se encuentra la máquina sincrónica Guacolda U1 en servicio, la inercia post-contingencia de la zona es nula.
- <u>EE05_Hmin_ZNC</u>: al igual que en el escenario anterior, se contempla una sola unidad de la CT Guacolda. No obstante, se considera de día, Demanda Alta y con penetración de ERNC media.
 Como solo se encuentra Guacolda U1 en servicio, la inercia post-contingencia de la zona es nula.

En ambos escenarios se considera una Hidrología Húmeda, con la Zona Norte Chico con tendencia a ser importadora.

Para evaluar la validez de estos escenarios se procede a aplicar una contingencia de Severidad 5 en la unidad más grande perteneciente a esta zona. Conforme a lo anterior, la siguiente figura muestra la evolución de las tensiones al aplicar dicha contingencia en ambos escenarios.

Figura 3-9 - Evolución de las tensiones en barras referenciales de la Zona Norte Chico ante Sev. 5 en U1 de CT Guacolda.

De los resultados anteriores se observa que, para los escenarios estudiados no se encuentran restricciones de inercia mínima asociados a fenómenos de estabilidad angular y tensión. Conforme a lo anterior, los Escenarios Específicos construidos para la Zona Norte Chico se toman como aquellos que contemplan la menor inercia según la metodología del presente estudio.

3.2.3 Zona Centro

Para encontrar la inercia mínima y construir el escenario específico asociado a la Zona Centro se utiliza como partida el despacho PCP que considere la mínima cantidad de máquinas sincrónicas en dicha zona y, en esta condición, se estudia la operación con 2 unidades sincrónicas menos.

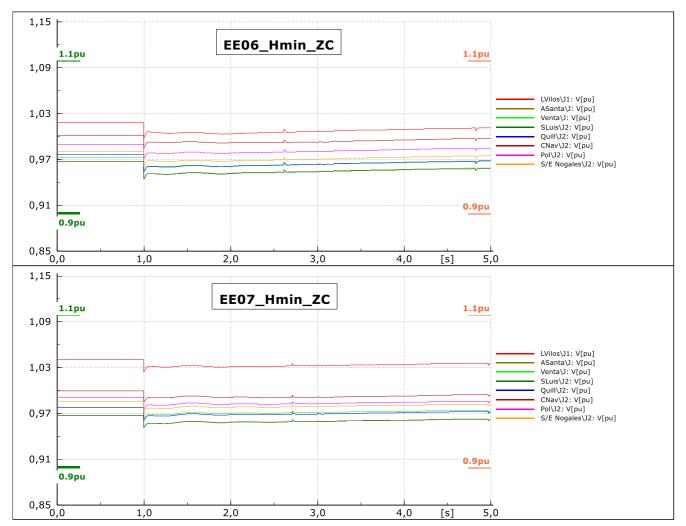
La siguiente tabla resume las características de los escenarios desarrollados.

Tabla 3-4 - Tabla resumen Escenario mínima inercia Zona Centro.

Casos Mínima Inercia - ZONA CENTRO								
Escenario CHARRÚA -:		CHARRÚA ->	INERCIA [MVAs]			Generadores		
Nombre	Tipo	ANCOA [MW]	Esc. Base	Esc. Esp.	Post-Cont	Unidad	P [MW]	INERCIA [MVAs]
						San Isidro U2	397	3426
						Pehuenche U1	270	1160
						Pehuenche U1	270	1160
						Ventanas U2	100	782
EE06 Hmin ZC	DB-HH-DIA	1220	13641	11699	8273	Alfalfal II U1	70	732
					Alfalfal II U2	70	345	
						Confluencia U1	60	345
						Confluencia U2	60	368
						Otras	1243	5323
						San Isidro U2 TG	360	3426
					Pehuenche U1	250	1160	
					7995	Pehuenche U2	250	1160
						Ventanas U2	200	782
EE07-Hmin ZC	DB-HH-NOCHE	1340	13363	11421		Colbún U1	200	1045
EEO/-HIIIII ZC	DB-IIII-NOCIIL	1340	13303	11421		Alfalfal II U1	70	345,273
						Las Lajas U1	80	422
						Las Lajas U2	80	421,96
						Confluencia U1	65	367,872
						Otras	787	4233

A partir de esto se construyen 2 Escenarios Específicos, los cuales consideran la salida de 2 unidades sincrónicas con respecto a los despachos del PCP, en este caso Pehuenche U2 y Ventanas U2. Estos se detallan brevemente a continuación:

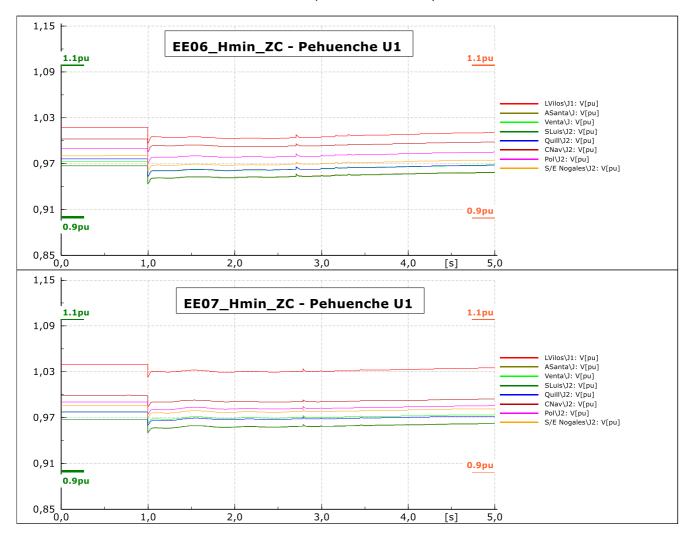
- <u>EE06 Hmin_ZC</u>: se considera un escenario de Demanda Baja de día y con alta penetración de ERNC, este escenario coincide con las características asociadas al de inercia mínima. En este se contemplan las siguientes unidades operativas referenciales en la Zona:
 - o San Isidro U1
 - o Ventanas U2
 - o Pehuenche U1
 - o Alfalfal II U1 y U2
 - Confluencia U1 y U2
- <u>EE07 Hmin ZC</u>: se considera un escenario de Demanda Baja de noche y con baja penetración de parques eólicos. En este se contemplan las siguientes unidades operativas referenciales en la Zona:


Estudio de SSCC para la Operación del SEN

- San Isidro U1
- Ventanas U2
- Central Colbún U1
- Pehuenche U1
- Alfalfal II U1 0
- Las Lajas U1 y U2

Para evaluar la validez de estos escenarios se procede a aplicar una contingencia de Severidad 5 en la unidad más grande perteneciente a esta zona, es decir, el CC San Isidro 2. Conforme a lo anterior, en la siguiente figura se muestra la evolución de las tensiones al aplicar dicha contingencia.

Figura 3-10 - Evolución de las tensiones en barras referenciales de la Zona Centro ante Sev. 5 en U2 de San Isidro.


De los resultados anteriores se observa que, para los escenarios estudiados no se encuentran restricciones de inercia mínima asociados a fenómenos de estabilidad angular y tensión. Conforme a lo anterior, los Escenarios Específicos construidos para la Zona Centro se toman como los que contempla la menor inercia según la metodología del presente estudio.

A modo de sensibilidad y para realizar un análisis más crítico con respecto a la inercia de la Zona Centro, a los escenarios EE06 y EE07 se contempla la central Pehuenche U1 fuera de servicio. En esta condición se realiza

la desconexión intempestiva del CC San Isidro 2 a plena carga. Conforme a lo anterior, la siguiente figura muestra la evolución de las tensiones en la Zona para estas condiciones.

Figura 3-11 - Evolución de las tensiones en barras referenciales de la Zona Centro ante Sev. 5 en U2 de San Isidro para escenario de sensibilidad (sin la CH Pehuenche U1).

3.2.4 Zona Sur

Para encontrar la inercia mínima y construir el escenario específico asociado a la Zona Sur se utiliza como partida el despacho PCP que considere la mínima cantidad de máquinas sincrónicas en dicha zona y, en esta condición, se estudia la operación con 2 unidades sincrónicas menos.

La siguiente tabla resume los Escenarios de mínima inercia construido para la Zona Sur:

Tabla 3-5 - Tabla resumen Escenarios de inercia mínima Zona Sur.

Casos Mínima Inercia - ZONA SUR								
Escenario CHARRÚA ->		INERCIA [MVAs]			Generadores			
Nombre	Tipo	ANCOA [MW]	Esc. Base	Esc. Esp.	Post-Cont	Unidad	P [MW]	INERCIA [MVAs]
						Santa María	370	1895,4
						Pangue U1	200	924
						Antuco U2	110	752
						Angostura U2	110	609,525
EE08 Hmin ZS	DB-HS-NOCHE	313	8186	6824	4929	El Toro U3	90	302,6311
					PetroPower	65	324,75	
						Valdivia	60	280
						Rucatayo	40	157,491
						Otras	428	2940
		i		Santa María	370	1895,4		
					6901 5006	Pangue U2	200	924
						Antuco U2	120	752
						Angostura U2	110	609,525
EE09-Hmin ZS	DB-HS-DIA	492	8263	6901		Santa Fe Energía	30	523,3654
LL09-1111111 23	DD-113-DIA	492	0203	0301		El Toro U3	90	302,6311
						Rucue U1	27	354,33
						Rucue U2	27	354,33
						Valdivia	60	280
						Otras	475	2267

A partir de esto se construyen 2 Escenarios Específicos, los cuales consideran la salida de 2 unidades sincrónicas con respecto a los despachos del PCP. Estos se detallan brevemente a continuación:

- <u>EE08 Hmin ZS</u>: se considera una Hidrología Seca, Demanda baja, de noche y con baja penetración de parques eólicos. En este se contemplan las siguientes unidades operativas referenciales en la Zona:
 - Santa María
 - o El Toro U3
 - o Angostura U2
 - Petropower
 - o Valdivia
 - Rucatayo
- <u>EE09 Hmin ZS</u>: se considera una Hidrología Seca, Demanda baja, de día y con alta penetración de parques renovables. En este se contemplan las siguientes unidades operativas referenciales en la Zona:
 - Santa María

- o El Toro U3
- Angostura U2
- o Santa Fe Energía
- o Rucue U1 y U2

Para evaluar la validez de estos escenarios se procede a aplicar una contingencia de Severidad 5 en la unidad más grande perteneciente a esta zona, es decir, CT Santa María a plena carga 370MW. Conforme a lo anterior, se muestra la evolución de las tensiones al aplicar dicha contingencia.

1,15 EE08_Hmin_ZS 1,09 Cha\J1: V[pu] Mulchén\J1: V[pu] 1,03 NvaVal\J1: V[pu] Cautin\J2: V[pu] Val\12: V[pu] CdHuin\J2: V[pu] RioTol\J2: V[pu] 0,97 Cirue\Los Ciruelos 220kV BB1: V[pu] Ppulli\Pichirropulli 220kV BB1: V[pu] 0,91 0.9pu 0.9pu 0,85 1,0 2,0 3,0 4,0 5,0 1,15 EE09_Hmin_ZS **1.1**pu 1,09 Cha\J1: V[pu] Mulchén\J1: V[pu] 1,03 NvaVal\J1: V[pu] Cautin\J2: V[pu] Val\J2: V[pu] CdHuin\J2: V[pu] RioTol\J2: V[pu] 0,97 Cirue\Los Ciruelos 220kV BB1: V[pu] Ppulli\Pichirropulli 220kV BB1: V[pu] 0,91 0.9pu 0.9pu 0,85 0,0 1,0 2,0 3,0 4,0 5,0 [s]

Figura 3-12 - Evolución de las tensiones en barras referenciales de la Zona Sur ante Sev. 5 en CT Santa María.

De los resultados anteriores se observa que, para los escenarios estudiados no se encuentran restricciones de inercia mínima asociados a fenómenos de estabilidad angular y tensión. Conforme a lo anterior, los Escenarios Específicos construidos para la Zona Sur se toman como los que contempla la menor inercia según la metodología del presente estudio.

3.3 Resumen de resultados

A partir del análisis realizado se construye una tabla que resume los análisis de inercia mínima específicos por zona.

	Inercia n	nínima* [MVAs]	
Zona	Económico PCP	Técnica (Esc. Específico)	Comentarios
Zona Norte	7392	6568	Existen limitaciones técnicas próximas a
Grande	7392	0306	los despachos económicos
Zona Norto Chico	Zona Norte Chico 2584	814	Mínimo técnico que valida el rango de
Zona Norte Chico		014	validez de los estudios
Zona Centro	13363	11421	Mínimo técnico que valida el rango de
Zona Centro	15505	11421	validez de los estudios
Zona Sur	Zona Sur 8186 6824	6924	Mínimo técnico que valida el rango de
Zona Sur		0024	validez de los estudios

^{*}Corresponde a la suma de las inercias de todas las unidades de generación de la zona

Tabla 3-6 - Resumen de resultados Análisis de Inercia mínima.

De los resultados presentados se observa que solo la Zona del Norte Grande posee limitaciones técnicas cercanas a los despachos económicos previstos según los Escenarios PCP. Se destaca que esta problemática está ligada a un problema de inestabilidad angular/tensión, la cual posee una gran dependencia del soporte reactivo dinámico cercano a la zona afectada.

4 REFERENCIAS

- [1] Informe Inicial Base de Datos <<EE-ES-2019-0324-RB>>. Estudios Eléctricos, marzo 2019.
- [2] Estudio de Diseño, Programa e Implementación del AGC del CDEC SIC Informe Final. ABB, diciembre de 2015.
- [3] Generation Control Tuning Guide: Application Manual. VENTYX, abril de 2014.
- [4] Automatic Generation Control (AGC): Function Description. VENTYX, octubre de 2014.
- [5] Resolución Exenta N° 801. Informe de Definición de Servicios Complementarios versión definitiva. Comisión Nacional de Energía, diciembre 2018.
- [6] Análisis de la operación interconectada en Fase 4 Informe Final—Parte#2. Coordinador Eléctrico Nacional, agosto 2018.
- [7] Estudio de Control de Frecuencia y Determinación de Reservas Informe Final. Coordinador Eléctrico General, Gerencia de Operación, diciembre 2018.
- [8] Análisis de la Operación de los Sistemas SIC-SING Interconectados Estudio 1 Control de Frecuencia y Distribución de Reservas para Control Primario y Secundario Informe Final. Coordinador Eléctrico Nacional, marzo 2017.
- [9] Fijación de Precios de Nudo de Corto Plazo Informe Técnico Definitivo. Comisión Nacional de Energía, julio 2018.
- [10] Informe de definición y programación de Servicios Complementarios año 2018. Marzo 2019

Esta página ha sido intencionalmente dejada en blanco