

TRACTEBEL ENGINEERING S.A.

Cerro Colorado 5240, Of. 1601, Ed. Torre del Parque II, Las Condes, Zip Code 7560995 - Santiago – CHILE tel. +56 2 2715 8000 - fax +56 2 2715 8001 engineering-cl@tractebel.engie.com tractebel-engie.com

Código de Documento: P012531-2-GE-INF-00002

RESTRINGIDO

Cliente: Coordinador Eléctrico Nacional

Proyecto: Prueba de Consumo Específico en Central Emelda - Unidad 02

Asunto: Informe de Prueba

Comentarios: Resultados a ser actualizados según confirmación de factor de conversión del flujómetro.

Informe de Prueba

TABLA DE CONTENIDO

RE	SUMEN	N EJECUTIVO	4		
1.	OBJETIVO Y ALCANCE DE LA PRUEBA				
2.	DEFINICIONES Y ABREVIACIONES				
3.	DESC	RIPCIÓN DE LA CENTRAL	ô		
4.	DOCU	MENTOS Y NORMAS APLICADAS	7		
5.	PARTI	CIPANTES DEL ENSAYO	7		
6.	DESC	RIPCIÓN DEL ENSAYO	8		
7.	MEDIC	CIONES	9		
	7.1.	Potencia Activa Bruta, Neta y Factor de Potencia	9		
	7.2.	Medición de Consumos Auxiliares1	0		
	7.3.	Mediciones de Temperatura y Humedad Relativa1	1		
	7.4.	Medición de Depresión en la Aspiración1	3		
	7.5.	Mediciones de Consumo de Combustible1	4		
	7.6.	Muestras de Combustible1	5		
8.	CÁLCULOS				
	8.1.	Consumo Específico Neto Medido	6		
	8.2.	Consumo Específico Neto Corregido1	7		
9.	RESULTADOS				
10.	D. ANEXOS				

ANEXO A – DATOS DE REFERENCIA	20
ANEXO B – ACTA DE PRUEBA	21
ANEXO C – LAYOUT DE LA CENTRAL	22
ANEXO D – CERTIFICADOS DE CALIBRACIÓN DE LOS INSTRUMENTOS	23
ANEXO E – ANÁLISIS DE COMBUSTIBLE	24
ANEXO F – MEDICIONES, CÁLCULOS Y GRÁFICOS	25

RESUMEN EJECUTIVO

El propósito del presente informe es reportar los resultados de la Prueba de Consumo Específico Neto realizadas en la Unidad 02 de la Central Emelda, ubicada en Diego de Almagro, Región de Atacama.

La metodología utilizada para la obtención del parámetro de interés se rige por el Anexo Técnico: "Determinación de Consumos Específicos de Unidades Generadoras" y el correspondiente Protocolo de Pruebas.

Los resultados de Consumo Específico Neto Corregido se resumen en la siguiente curva.

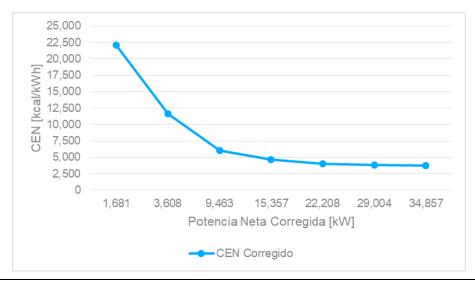


Figura 1: Curva de CEN corregido.

Figura 2: Central Emelda, a la izquierda Unidad 02 y derecha Unidad 01.

1. OBJETIVO Y ALCANCE DE LA PRUEBA

Conforme resolución del Coordinador Eléctrico Nacional, las empresas generadoras deberán validar el valor de consumo específico de sus unidades en conformidad a las disposiciones del Anexo Técnico: "Determinación de Consumos Específicos de Unidades Generadoras" de la Norma Técnica de Seguridad y Calidad De Servicio - Resolución exenta N°375.

El presente documento tiene como objetivo reportar los resultados obtenidos durante el ensayo de la **Central Emelda Unidad 02**, ubicada en la de Diego de Almagro, Región de Atacama.

2. DEFINICIONES Y ABREVIACIONES

Definiciones

Unidad	Unidad Generadora (turbina de gas acoplada a su respectivo generador eléctrico)
Variables Primarias	Son datos utilizados para los cálculos y correcciones de consumo específico
Variables Secundarias	Son datos utilizados para verificar, diagnosticar o demostrar que la planta está funcionando según las condiciones contractuales

Abreviaciones

CEN	Consumo Específico Neto
FP	Factor de Potencia
HR	Humedad Relativa [%]
PCI	Poder Calorífico Inferior
PCS	Poder Calorífico Superior
SCADA	Supervisory Control and Data Acquisition
SSAA	Servicios Auxiliares

3. DESCRIPCIÓN DE LA CENTRAL

La Central Emelda, propiedad de Prime Energía, es una central térmica compuesta por dos turbinas de combustión en modo ciclo abierto. La Unidad TG2 entró en operación el 21 de septiembre de 2010. En la Tabla 1 se presentan parámetros de interés informados al Coordinador Eléctrico Nacional.

Emelda Unidad 02	Información	Referencia
Turbina de Combustión	GE PG6541B	Ver Anexo E
Modo Operación	Ciclo Abierto	Ver Anexo E
Potencia Máxima Bruta (2017)	34,3 MW	Ver Anexo E
Mínimo Técnico Termodinámico ¹	2,0 MW	Ver Anexo E
Consumo Propio (% Pot.Max Bruta)	0,84 %	Ver Anexo E
Combustible	Diésel grado B	Ver Anexo E
Consumo Específico Referencial	0,36 ton/MWh	Ver Anexo E
Generador Eléctrico	GE 336X489	Ver Anexo E
Velocidad Nominal	3.000 rpm	Ver Anexo E
Sistema de Control	MK-V-SPEED TRONIC	Ver Anexo E

Tabla 1. Parámetros Unidad 02 de Central Emelda.

¹ Valor indicado por el Coordinador Eléctrico Nacional en la carta de aceptación del mínimo técnico de las Unidades TG1 y TG2 de Central EMELDA, código documento DE 02928-18

4. DOCUMENTOS Y NORMAS APLICADAS

Los documentos, que son aplicables para la realización de las pruebas, son los siguientes:

- Anexo Técnico Determinación de Consumos Específicos de Unidades Generadoras
- Protocolo de Pruebas: P013591-2-GE-PRG-00001
- Norma ISO 2314
- Norma ASME PTC 22

5. PARTICIPANTES DEL ENSAYO

El personal participante de las pruebas de Potencia Máxima se describe a continuación:

Participante	Cargo	Nombre
Tractebel	Experto Técnico	Eduardo Andrzejewski
	Ingeniero de Pruebas	Ismael Rodríguez
	Jefe de Operaciones	Bryan O'Shaughnessy
Empresa Generadora Prime Energía	Operador de Sala	Eric Cortés
	Operador de Sala	Luis Badilla
Laboratorio OTI	Inspector Técnico	José Pedro Flores
Proterm S.A	Ingeniero de Proyectos	Francisco Zamorano
Tecnored S.A	Técnico Eléctrico A	Oscar Vergara
rectioned S.A	Técnico Eléctrico B	Mauricio Flores

Figura 3. Personal Participante de la Prueba de Potencia Maxima

En el Anexo B se encuentra el Acta de Prueba con el listado de asistencia.

6. DESCRIPCIÓN DEL ENSAYO

La prueba de Consumo Especifico Neto se realizó entre los días 6 y 7 de febrero de 2019.

La prueba inició en el estado de carga de potencia máxima correspondiente a 35,6 MW (Estado 07) el cual fue realizado durante la Prueba de Potencia Máxima el día 6 de febrero de 2019.

Al día siguiente se realizaron los estados de carga intermedios aumentando desde 10 MW hasta 30 MW (Estados 03, 04, 05 y 06). Por último se dio paso a estados de carga inferiores de 4 MW y 2 MW (Estados 01, 02). En la Tabla 2 se puede apreciar el cronograma del ensayo:

Hito	Carga	Hora Inicio	Hora Término	Fecha
Estado de Carga 01	2.000 kW	00:20	00:50	07/03/2019
Estado de Carga 02	4.000 kW	23:40	00:10	06/03/2019
Estado de Carga 03	10.000 kW	20:50	21:20	06/03/2019
Estado de Carga 04	16.000 kW	21:30	22:00	06/03/2019
Estado de Carga 05	23.000 kW	22:10	22:40	06/03/2019
Estado de Carga 06	30.000 kW	22:50	23:30	06/03/2019
Estado de Carga 07	35.600 kW	01:00	01:30	06/03/2019

Tabla 2. Cronograma de Prueba de Consumo Específico Neto

El periodo de estabilización para cada estado de carga fue de 10 minutos.

7. MEDICIONES

Para efecto de cálculos, se consideran la totalidad de las mediciones registradas en cada estado de carga.

Nota: En cada gráfico se presentan los datos en orden cronológico, se debe tener en cuenta que el estado de carga de potencia máxima se desarrolló de 01:30 a 02:00 hrs, y los estados restantes de 20:50 a 00:50 hrs del día siguiente.

7.1. Potencia Activa Bruta, Neta y Factor de Potencia

Las mediciones de Potencia Activa Bruta y Factor de Potencia se registraron cada 5 segundos a través de un medidor externo ION 8600 Clase 0.2. A su vez, las mediciones de Potencia Neta por un segundo medidor ION 8600 externo, instalado en paralelo al medidor de tarificación. Ambas mediciones fueron ejecutadas por la empresa externa Tecnored. En la Figura 4 se grafican ambos registros, y se pueden apreciar los 7 estados de carga.

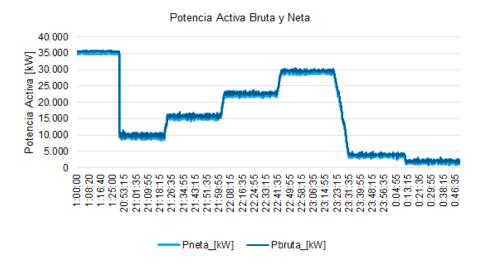


Figura 4. Potencia Activa Bruta y Neta en los 7 estados de carga.

A continuación en la Tabla 3 se presenta un resumen de los valores promedio para cada uno de los estados de carga:

Estado de Carga	Carga	Potencia Neta [kW]	Potencia Bruta [kW]	Factor de Potencia
Estado 01	2.000 kW	1.680	2.124	0,83
Estado 02	4.000 kW	3.607	4.061	0,93
Estado 03	10.000 kW	9.462	9.956	0,94
Estado 04	16.000 kW	15.363	15.880	0,98
Estado 05	23.000 kW	22.218	22.784	0,98
Estado 06	30.000 kW	29.026	29.666	1,00
Estado 07	35.600 kW	34.885	35.591	1,00

Tabla 3. Valor Promedio de Potencia Activa Bruta, Neta y Factor de Potencia

7.2. Medición de Consumos Auxiliares

Las mediciones de consumos auxiliares de la central se registraron cada 5 minutos desde el medidor existente de la central. En la Figura 5 se presentan las mediciones.

Figura 5. Registro Consumos Auxiliares de la Central

7.3. Mediciones de Temperatura y Humedad Relativa

Las condiciones ambientales se registraron a través de instrumentación portátil provista por el personal de la Central Emelda y el Equipo de Tractebel.

	Marca y Modelo	Variables de Medición	Cantidad Equipos	Tasa de Muestreo
Central Emelda	Fluke 971	Temperatura y Humedad Relativa	2	5 segundos
	Testo 405i	Temperatura	1	5 segundos
Tractebel	Testo 605i	Temperatura y Humedad Relativa	1	5 segundos

Tabla 4. Equipos de Medición Variables Ambientales

Los certificados de calibración de los instrumentos se encuentran en el Anexo D.

7.3.1. Temperatura de Aire de Admisión

Se registró la temperatura de aire de aspiración a través de 4 sensores ubicados en la casa de filtros. En la Figura 6 se grafican las mediciones.

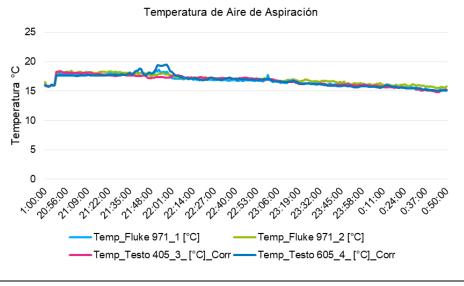


Figura 6. Temperatura Aire de Aspiración

Los valores promedio de temperatura de aire de aspiración para cada estado de carga se indican en la Tabla 5.

Hito	Carga	Temperatura Aire Aspiración [°C]
Estado de Carga 01	2.000 kW	15,4
Estado de Carga 02	4.000 kW	16,0
Estado de Carga 03	10.000 kW	17,9
Estado de Carga 04	16.000 kW	18,0
Estado de Carga 05	23.000 kW	17,1
Estado de Carga 06	30.000 kW	16,8
Estado de Carga 07	35.600 kW	16,0

Tabla 5: Temperatura de aspiración promedio en cada estado de carga

7.3.2. Mediciones de Humedad Relativa

Las mediciones de humedad relativa se registraron los equipos de medición indicados en la Tabla 4. En la Figura 7 se muestra el gráfico asociado para los distintos estados de carga.

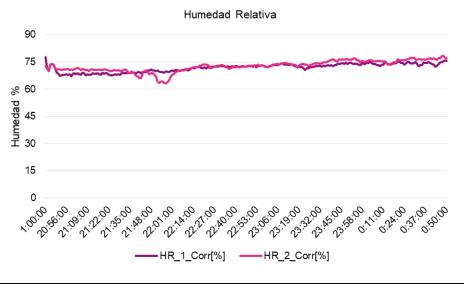


Figura 7. Humedad Relativa

En la Tabla 6 se indican los valores promedios registrados para cada estado de carga.

Hito	Carga	Humedad Relativa [%]
Estado de Carga 01	2.000 kW	75,5
Estado de Carga 02	4.000 kW	74,9
Estado de Carga 03	10.000 kW	69,6
Estado de Carga 04	16.000 kW	68,4
Estado de Carga 05	23.000 kW	72,2
Estado de Carga 06	30.000 kW	73,1
Estado de Carga 07	35.600 kW	72,7

Tabla 6. Mediciones de humedad relativa promedio para cada estado de carga.

7.4. Medición de Depresión en la Aspiración

La depresión en la aspiración fue medida a través de sensores temporales, ver registro en Figura 8 y promedios en cada estado de carga en Tabla 7.

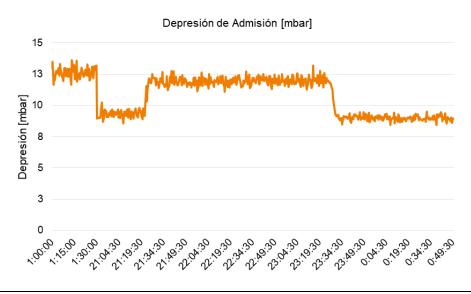


Figura 8. Depresión en la Aspiración.

En la Tabla 7 se indican los valores promedios registrados para cada estado de carga:

Hito	Carga	Depresión en Aspiración [mbar]
Estado de Carga 01	2.000 kW	8,98
Estado de Carga 02	4.000 kW	9,03
Estado de Carga 03	10.000 kW	9,33
Estado de Carga 04	16.000 kW	11,88
Estado de Carga 05	23.000 kW	11,94
Estado de Carga 06	30.000 kW	11,99
Estado de Carga 07	35.600 kW	12,63

Tabla 7: Depresión en aspiración promedio en cada estado de carga.

7.5. Mediciones de Consumo de Combustible

Las mediciones de consumo de combustible se realizaron a través del flujómetro de existente, ver Figura 9.

Figura 9: Flujómetro tipo Coriolis.

Durante la prueba, se registró a través del SCADA las mediciones de flujo cada 1 segundo. Los valores promedio durante cada intervalo se indican en la Tabla 8.

Estado	Potencia Neta [kW]	Consumo Promedio de Combustible [kg/h]
Estado de Carga 01	2.000 kW	3.393
Estado de Carga 02	4.000 kW	3.846
Estado de Carga 03	10.000 kW	5.219
Estado de Carga 04	16.000 kW	6.640
Estado de Carga 05	23.000 kW	8.277
Estado de Carga 06	30.000 kW	10.166
Estado de Carga 07	35.600 kW	11.882

Tabla 8: Consumo de Combustible promedio registrado en cada estado de carga.

7.6. Muestras de Combustible

Para cada estado de carga, se tomó una muestra de combustible desde un arranque de la línea de combustible, ver Figura 10. El procedimiento y análisis fue ejecutado por Laboratorio OTI, ver informe en Anexo E.

	Método	Valor	Unidad
Poder Calorífico Superior Promedio	ASTM D4868	10.925	kcal/kg

Tabla 9: Resumen de resultados del análisis de combustible, ver certificado en Anexo E.

Figura 10: Toma de muestras de combustible desde arranque ubicado en filtros de combustible.

Conforme al Artículo 20 del Anexo Técnico, para el cálculo del Consumo Específico Neto se aplicará el <u>Poder Calorífico Superior</u>.

8. CÁLCULOS

8.1. Consumo Específico Neto Medido

Durante cada estado de carga, es posible calcular el Consumo Específico Neto según la siguiente expresión:

$${\sf CEN}: \frac{{\sf Consumo\ de\ Combustible}*{\sf Poder\ Calor\'ifico\ Superior}}{{\sf Potencia\ Neta}}$$

En la Tabla 10 se indican los valores de CEN medido para cada estado de carga.

	Potencia Neta Medida [kW]	Consumo Específico Neto Medido [ton/MWh]	Consumo Específico Neto Medido [kcal/kWh]
Estado de Carga 01	2.000 kW	2,020	22.064
Estado de Carga 02	4.000 kW	1,066	11.647
Estado de Carga 03	10.000 kW	0,552	6.026
Estado de Carga 04	16.000 kW	0,432	4.722
Estado de Carga 05	23.000 kW	0,373	4.070
Estado de Carga 06	30.000 kW	0,350	3.827
Estado de Carga 07	35.600 kW	0,341	3.721

Tabla 10: Consumo Específico Neto en cada estado de carga

8.2. Consumo Específico Neto Corregido

Condiciones de Referencia

El consumo específico neto determinado en el capítulo anterior debe ser corregido a fin de homologarlo a las condiciones de referencia de la central.

Las condiciones de referencia para la Unidad TG2 de la Central Emelda son las siguientes:

Parámetro	Valor	Observación
Temperatura Ambiente [°C]	17	Condición de Sitio - Promedio Anual ²
Humedad Relativa [%]	60	Condición Referencia ISO
Presión Barométrica [mbar]	1.013	Condición Referencia ISO
Altitud [msnm]	170	Condición de Sitio
Depresión Admisión [mbar]	10,0	Condición Referencia Curvas PG6541B
Factor de Potencia Generador	0,95	Condición Anexo Técnico

Tabla 11. Valores de Referencia Prueba Consumo Específico Neto

Corrección por Factor de Potencia

Durante la prueba, se intentó operar la unidad en factor de potencia 0,95, sin embargo se generaron inestabilidades, por lo que fue deshabilitado el control de reactivos. Dado lo anterior, se aplica la correspondiente corrección por factor de potencia de acuerdo a las curvas de eficiencia del generador.

Consumo Específico Neto Corregido

A partir de los valores de CEN medidos en el Capítulo 8.1 y según las condiciones dadas durante cada estado de carga (Capítulo 7), se aplican las correcciones utilizando las curvas de corrección. El valor de CEN corregido es calculado según la siguiente expresión.

$$CEN_{corregido}: \frac{Consumo\ Combustible_{corregido}*PCS}{Potencia\ Neta_{corregida}}$$

En el Anexo F se indican los resultados detallan las mediciones y cálculos.

² Temperatura promedio anual de referencia para el sitio. Fuente: Coordinador Eléctrico Nacional.

9. RESULTADOS

Los resultados de Consumo Específico Neto medido y corregido para la Central Emelda se indican en la Tabla 12.

Carga	CEN Medido [ton/MWh]	CEN Corregido [ton/MWh]	Corrección	CEN Corregido [kcal/kWh]
2.000 kW	2,020	2,023	0,2%	22.100
4.000 kW	1,066	1,067	0,1%	11.660
10.000 kW	0,552	0,551	-0,2%	6.016
16.000 kW	0,432	0,431	-0,2%	4.711
23.000 kW	0,373	0,372	-0,1%	4.066
30.000 kW	0,350	0,350	0,0%	3.825
35.600 kW	0,341	0,341	0,1%	3.723

Tabla 12: Resultados de Consumo Específico Neto de Emelda Unidad 02.

En la Figura 11 se grafica la curva de CEN corregido. En el Anexo F se contemplan las mediciones, cálculos y gráficos.

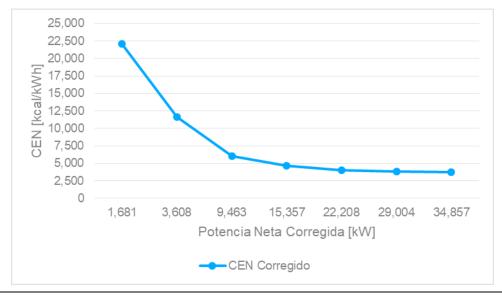


Figura 11: Curva de CEN corregido.

10. ANEXOS

ANEXO A - DATOS DE REFERENCIA

ANEXO B – ACTA DE PRUEBA

ANEXO C – LAYOUT DE LA CENTRAL

ANEXO D – CERTIFICADOS DE CALIBRACIÓN DE LOS INSTRUMENTOS

ANEXO E – ANÁLISIS DE COMBUSTIBLE

ANEXO F - MEDICIONES, CÁLCULOS Y GRÁFICOS

ANEXO A – DATOS DE REFERENCIA

Información Técnica Coordinador Eléctrico Nacional

INFORMACIÓN TÉCNICA PARA LOS ESTUDIOS DEL COORDINADOR					
Tipo Central (NTSyCS)	Texto	TURBINA GAS			
Subestación de Inyección		S/E CENTRAL EMELDA			
11.1.2 Puntos de conexión al SI a través de los cuales inyecta energia.		S/E CENTRAL EMELDA 110 KV			
11.1.3 Potencia Aparente Máxima	[MVA]	46,6			
11.1.4 Potencia máxima bruta, para cada tipo de combustible que pueda operar	[MW]	34,33			
11.1.5 Consumos propios como % de la potencia máxima bruta	[%]	0,84			
11.1.6 Capacidad máxima, Potencia neta efectiva	[MW]	34,04			

Carta de entrega despacho EMELDA Unidad TG2(extracto)

Santiago, 16 de Septiembre de 2010

Señor Eduardo Ricke Muñoz Director de Operación CDEC-SIC Presente

Ref: Entrega a Despacho Unidad N°2 Central EMELDA

Por medio de la presente, tengo el agrado de informar a usted que se ha concluido exitosamente con el proceso de construcción y puesta en servicio de la Central Empresa Eléctrica Diego de Almagro Unidad 2 (en adelante "Central EMELDA U2"), situada físicamente en la localidad de Diego de Almagro, III Región, y conectada eléctricamente en la barra 110 kV de la S/E Diego de Almagro a través de un circuito de 110 kV.

Por lo tanto, a partir de las 00:00 horas del 17 de Septiembre de 2010, la Central EMELDA U2 queda a disposición del CDEC-SIC para ser incluida en la planificación de la operación, cálculo de potencia firme y respectivo despacho económico.

La información técnica de la Central EMELDA U2 es la siguiente:

Potencia Bruta:	36 (MW)
 Consumo Propio: 	0.8 (%)
 Tiempo de Partida: 	12 (min)
 Tasa de Toma de Carga: 	10 (MW/min)
 Mínimo Técnico: 	12 (MW)
 Consumo Específico: 	0.36 (ton/MWh)
 Consumo Específico Mínimo Técnico: 	0.59 (ton/MWh)

Por otro lado, la Central operará con Petróleo Diesel N°2 y el precio de combustible es el que se indica a continuación:

Precio Combustible líquido Central EMELDA U2, Petróleo Diesel Nº2: 741,22 (USD/ton)

ANNEX 1

Introduction of The Transfering S206B unit

1.1 GT Operation and Maintenance

1.1.1 Equipment Specification

	Power	630hp	630hp
Diesel engine	Туре	V-type 12-cylinder 2-stroke water-cooled	V-type 12-cylinder 2-stroke water-cooled
	Model	DETROIT 12V71T	DETROIT 12V71T
	Excitation voltage	40.32V	
	Excitation current	5.42A	
Exciter	Rated frequency	50HZ.	
58 E	Rated current	329A(DC)	Brushless excitation
	Rated voltage	157V(DC)	
	Rated output	130 KW	
	Model	JWL130-3000	
	Connection type	Y	" Y
	Insulation Level	В	
	Excitation method	AC brushless	Brushless excitation
	Cooling method	Closed circulating air-cooling	Closed circulating air-coolin
	Power factor	0.8	0.8
Generator	Rated speed	3000rpm	3000rpm
GT	Rated frequency	50HZ	50Hz
	Rated current	2474.4A	2278A
	Rated voltage	10500V	11500V
	Rated capacity	36000KW	36300kW
	Model	QFR-36-2	
	Manufacturer	Nanjing Turbine Workshop(GE-CHINA)	. U.S. GE
	GT Performance	33.00 MW(Heavy oil), 12696 kJ/KWh,JSO	36.70 MW(Heavy oil), 1177 kJ/KWh,ISO
	Control system	MK-VI SPEED TRONIC	MK-V SPEED TRONIC
GT	Number	GT6003	T295922
	Model	PG6531B	PG6541B
	Manufacturer	Nanjing Turbine Factory	U.S. GE
	Item	*1 GT	"2 GT

P013591-2-GE-PRG-00003 B ANEXOS **RESTRINGIDO**

ANEXO B – ACTA DE PRUEBA

TRACTEBEL ENGINEERING S.A.

Cerro Colorado 5240, Of. 1601, Ed. Torre del Parque II, Las Condes, Zip Code 7560995 - Santiago - CHILE tel. +56 2 2715 8000 - fax +56 2 2715 8001 engineering-cl@tractebel.engie.com tractebel-engie.com

Código

P013591

ACTA DE PRUEBA

RESTRINGIDO

Asunto:

Determinación de Consumo Específico en unidad(es) generadora(s)

Proyecto:

Prueba de Consumo Específico en Central EMELDA

Lugar:

Comuna de Diego de Almagro

Fecha:

06/03/19 al 07/03/19

> Central EMELDA TGZ GE PG6541B Unidad Generador eléctrico 6E 336X489

Evento Hora [HH:MM] Inicio de las actividades 19:00 - 02:00 Inicio de la estabilización 20:40 10:50 Inicio de la prueba Finalización de la prueba 00:50

Lista de asistentes

EMELDA JEFE DE PLANTA

PRINCIPALES EVENTOS OCURRIDOS

1. Cambio de filtros de succión:

2. Cambio de filtros de combustible:

SI (NO (SI)/ NO

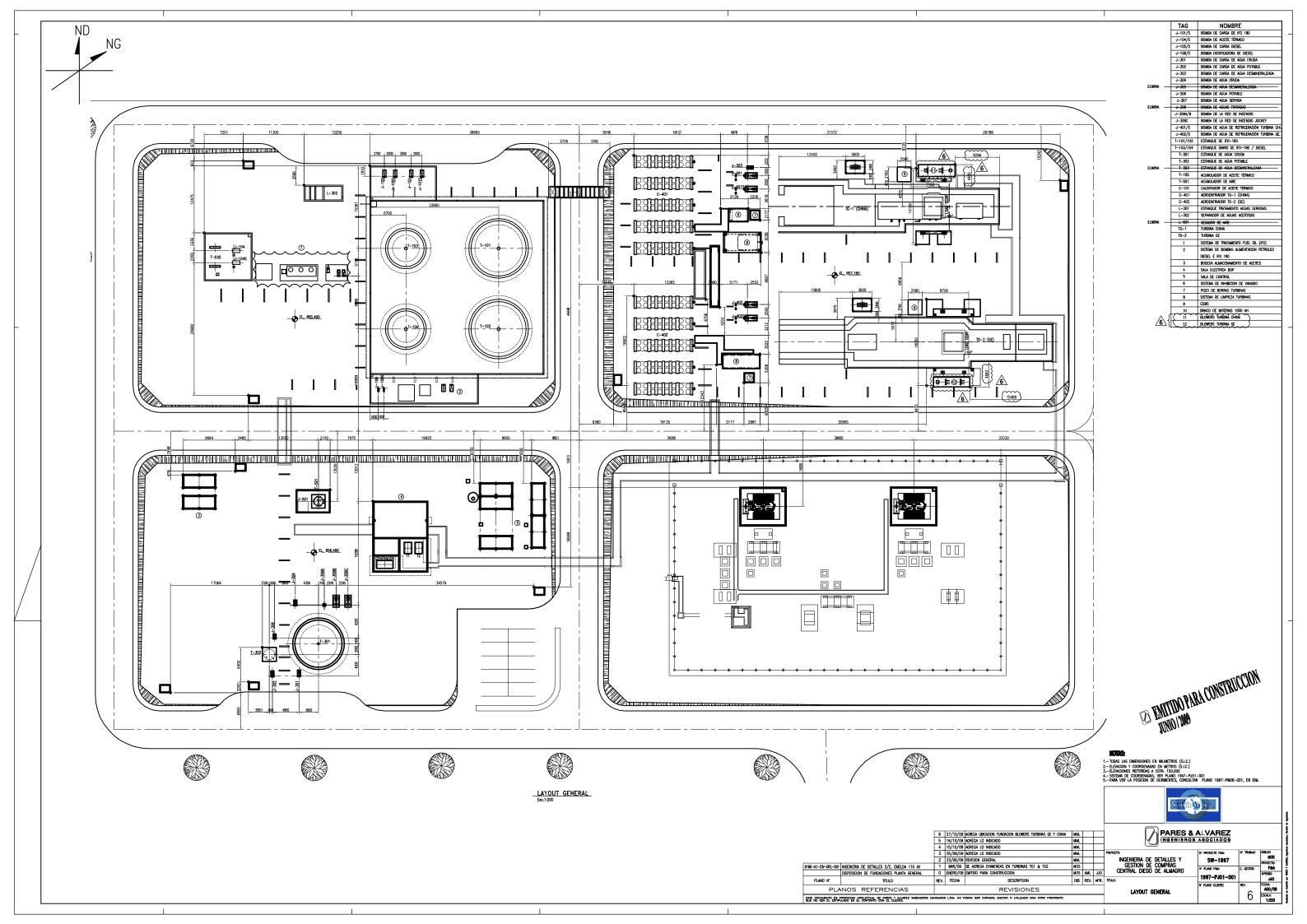
Anexo 01

Fecha: 63/03/19

1

- 1. Estado de carga de Pimax se realiza durante Prueba de Pobencia Maxima.
- 2. Se micia con estado de 10 MW aumentando hasta 30 MW, luego estados inferiores de 4 y 2 MW. Esto a fin de lograr mayor estabilidad en cargas bajas.
- 3. Los operadores intentan setear el Factor de Potencia en 0,95 pero se generan inestabilidades. Se deshabilita control de reactivos Factor de Potencia queda en 1,00

Estado de Carga [kW] Hora Facha [HH:MM] Jniuo		Flujo de combustible ne to Alimentación	Retorno no apla ca	Tamb [°C]	HR [%]	
Pmax: 35.600	06/03 - 01:00	3,23		16,1	72,6	
10.000	06/03 - 20:50	1,42		18,5	67,7	
16.000	06/03 - ZI: 30	1,89		18,2	68,8	
23.000	06/03 - 22:10	2,25		17,2	72,5	
30.000	06/03-22:50	2,78		17,0	73,5	
4.000		1,03		16,4	74,4	
	07/03-00:20	0,91		16,2	74,2_	
					EMELDA Empresa Elegrica Diego de Almegro JEFE DE PLANTA	


La totalidad de las mediciones registradas durante la prueba serán tabuladas y enviadas en formato digital a más tardar el día: 19

The state of the s

Anexo 01: Lista de Asistentes

Nombre	Empresa	Cargo	Firma
Ismael Rodu'quez	Tractesel	Ingeniero de Prvebas	6-2/1476
SRIAN SHAUGHNESSY	PRIME GOLDIA	JERE DE -	R
Eric Contés	Prime ENERGIA	OPERATION DE	
JOSE PEDIO FLOSE MORROW	Oil TEST	THEORIGO	Junf Hill
luis BADILLA M.	Prine ENER614	0- SNA	Crosses . N
Oscar Vergara C.		Técnico Eléct.	Cuff.
Mauricio Flores A.	Tecnored SA	Tecrico Eled	CAPA
Eduardo Andizejewski	TRECTES EL	Expa to tecnico	200
FRANCISCO ZATIONANO GUZTUÁN	PROTERMSA.	JUSENIETO DE PROJECTOS	Townsut

ANEXO C – LAYOUT DE LA CENTRAL

ANEXO D – CERTIFICADOS DE CALIBRACIÓN DE LOS INSTRUMENTOS

CERTIFICADO DE EXACTITUD LABORATORIO DE TECNORED S.A. MEDIDORES DE ENERGÍA ELECTRICA

FOLIO: 37073

0,4

ANTECEDENTES DEL CLIENTE : Correo Solicitud

: 26-06-2018 Fecha Calibración : ION 8600 Medidor Cliente : Laboratorio Instalación : Laboratorio Subestación : Laboratorio

ANTECEDENTES DEL MEDIDOR

Marca : Schneider Electric : P8600B4C0H5E0B0B Modelo Nº de Serie : PT-0807A564-01 : Remarcador Estado : 2008 Año Fabricación Clase Exactitud (%) : 0,2 Constante Med. : 1

	RESULTADOS DE LA COMPONENTE							
	ACTIVA							
	Componente Activa Componente Activa							
				Dir	ecta	Rev	versa	
N	Fase	Cte.%	Factor	Error (%)	Límite Norma (%)	Error(%)	Límite Norma (%)	
1	123	100	1	-0,033	± 0,2	-0,062	± 0,2	
2	123	100	0,5	-0,067	± 0,3	-0,096	± 0,3	
3	123	10	1	-0,065	± 0,2	-0,072	± 0,2	
4	123	10	0,5	-0,117	± 0,3	-0,101	± 0,3	
5	1	100	1	-0,034	± 0,3	-0,063	± 0,3	
6	2	100	1	-0,059	± 0,3	-0,079	± 0,3	
7	3	100	1	-0,055	± 0,3	-0,057	± 0,3	
8	1	100	0,5	-0,069	± 0,4	-0,106	± 0,4	
9	2	100	0,5	-0,062	± 0,4	-0,095	± 0,4	

0,4

-0,070

PATRON DE CALIBRACIÓN : Applied Precision Marca : PTE 2300 Modelo : 2617110222 N° Serie Clase de Exactitud : 0,05 Trazabilidad : Laboratorio Tecnored CONDICIONES DE MEDIDA

Tipo de Medida : W,ESTRELLA/ACTIVO : 63,5 (V) Tensión Aplicada Corriente Nominal : 5 (A) N° de Elementos : 3 Método Calibración : Comparación Directa

(HZ)

: 50

: 23 : 40,0

: G. Vega

Frecuencia (Hz)

Temperatura (Co)

Humedad (%)

Calibrador

	RESULTADOS DE LA COMPONENTE								
REACTIVA									
	Componente Reactiva Componente Reactiva								
				Dir	ecta		Rev	versa	
N Fase Cte.% Factor		Factor	Error (%)		ímite ma (%)	Error(%)		mite na (%)	
1	123	100	1	-0,097	±	2,0	-0,109	±	2,0
2	123	100	0,5	-0,071	±	2,0	-0,075	±	2,0
3	123	10	1	-0,100	±	2,0	-0,134	±	2,0
4	123	10	0,5	-0,066	±	2,0	-0,070	±	2,0
5	1	100	1	-0,071	±	3,0	-0,078	±	3,0
6	2	100	1	-0,072	±	3,0	-0,073	±	3,0
7	3	100	1	-0,109	±	3,0	-0,110	±	3,0
8	1	100	0,5	-0,088	±	3,0	-0,091	±	3,0
9	2	100	0,5	-0,126	±	3,0	-0,098	±	3,0
10	3	100	0,5	-0,076	±	3,0	-0,090	±	3,0

OBSERVACIONES Y CONCLUSIONES

Los errores encontrados cumplen con la Normativa Vigente IEC 62053-22 (ITEM 8.1). Tecnored S.A., declina toda responsabilidad por el uso indebido que se hicieran de este certificado. Este documento no puede ser reproducido en forma parcial.

100

0,5

-0,088

Jaime Eduardo García Collao Jefe Área Laboratorio y Medidas

TECNORED S.A.

Cerro El Plomo 3819 Barrio Industrial Curauma, Valparaíso Fono: 56-32-2452580 fax: 56-32-2452571 www.tecnored.cl ventas@tecnored.cl

CERTIFICADO DE EXACTITUD LABORATORIO DE TECNORED S.A. MEDIDORES DE ENERGÍA ELECTRICA

FOLIO: 37042

ANTECEDENTES DEL CLIENTE					
Solicitud	: Correo				
Fecha Calibración	: 11.06.2018				
Medidor	: ION 8600				
Cliente	:				
Instalación	:				
Subestación	:				

ANTECEDENTES DEL MEDIDOR					
Marca	: Schneider Electric				
Modelo	: P8600A4C0H5E0B0A				
Nº de Serie	: PT-0807A491-01				
Estado	: Nuevo				
Año Fabricación	: 2008				
Clase Exactitud (%)	: 0,2				
Constante Med.	: 1				

PA	TRON DE CALIBRACIÓN
Marca	: MTE
Modelo	: PTS 3.3
N° Serie	: 29562
Clase de Exactitud	: 0,05
Trazabilidad	: Laboratorio Tecnored
CO	NDICIONES DE MEDIDA
Tipo de Medida	: W,ESTRELLA/ACTIVO
Tensión Aplicada	: 63,5 (V)
Corriente Nominal	: 5 (A)
N° de Elementos	: 3

PAT	PATRON DE CALIBRACIÓN					
Marca	: MTE					
Modelo	: PTS 3.3					
N° Serie	: 29562					
Clase de Exactitud	: 0,05					
Trazabilidad	: Laborato	rio Tecnored				
CO	NDICIONES	S DE MEDIDA				
Tipo de Medida	: W,ESTR	ELLA/ACTIVO				
Tensión Aplicada	: 63,5	(V)				
Corriente Nominal	: 5	(A)				
N° de Elementos	: 3					
Método Calibración	: Compara	ción Directa				
Frecuencia (Hz)	: 50	(HZ)				
Temperatura (C°)	: 21,9					
Humedad (%)	: 42,7					
Calibrador	: M.Monte	ecino				

	RESULTADOS DE LA COMPONENTE ACTIVA							
	Componente Activa Directa Componente Activa Reversa							
N	N Fase Cte.% Factor			Error (%)	Límite Norma (%)	Error(%)	Límite Norma (%)	
1	123	100	1	-0,052	± 0,2	-0,061	± 0,2	
2	123	100	0,5	-0,072	± 0,3	-0,090	± 0,3	
3	123	10	1	-0,073	± 0,2	-0,071	± 0,2	
4	123	10	0,5	-0,107	± 0,3	-0,101	± 0,3	
5	1	100	1	-0,027	± 0,3	-0,090	± 0,3	
6	2	100	1	-0,080	± 0,3	-0,083	± 0,3	
7	3	100	1	-0,065	± 0,3	-0,069	± 0,3	
8	1	100	0,5	-0,005	± 0,4	-0,082	± 0,4	
9	2	100	0,5	-0,128	± 0,4	-0,110	± 0,4	
10	3	100	0,5	-0,112	± 0,4	-0,100	± 0,4	

	RESULTADOS DE LA COMPONENTE							
	REACTIVA							
	Componente Reactiva Componente Reactiva							
				Dir	ecta	Rev	ersa	
N	Fase	Cte.%	Factor	Error (%)	Límite Norma (%)	Error(%)	Límite Norma (%)	
1	123	100	1	-0,085	± 2,0	-0,086	± 2,0	
2	123	100	0,5	-0,104	± 2,0	-0,108	± 2,0	
3	123	10	1	-0,087	± 2,0	-0,092	± 2,0	
4	123	10	0,5	-0,136	± 2,0	-0,165	± 2,0	
5	1	100	1	-0,075	± 3,0	-0,078	± 3,0	
6	2	100	1	-0,097	± 3,0	-0,103	± 3,0	
7	3	100	1	-0,096	± 3,0	-0,098	± 3,0	
8	1	100	0,5	-0,045	± 3,0	-0,046	± 3,0	
9	2	100	0,5	-0,144	± 3,0	-0,147	± 3,0	
10	3	100	0,5	-0,111	± 3,0	-0,126	± 3,0	

OBSERVACIONES Y CONCLUSIONES

Los errores encontrados cumplen con la Normativa Vigente IEC 62053-22 (ITEM 8.1). Tecnored S.A., declina toda responsabilidad por el uso indebido que se hicieran de este certificado. Este documento no puede ser reproducido en forma parcial.

> Jaime Eduardo García Collao Jefe Área Laboratorio y Medidas

TECNORED S.A.
Cerro El Plomo 3819 Barrio Industrial Curauma, Valparaíso
Fono: 56-32-2452580 fax: 56-32-2452571 www.tecnored.cl ventas@tecnored.cl

CERTIFICADO DE CALIBRACIÓN SMD - 57735

Solicitante: Orden de Trabajo: EMPRESA ELECTRICA DIEGO DE ALMAGRO S.A. 459934

Dirección: Fecha de Emisión: 2017-10-10 Cerro El Plomo # 5630 P 14A - Las Condes

Acreditado por INN, Acreditación LC 006

División Metrología - Laboratorio de Calibración Magnitud Temperatura - Santiago

IDENTIFICACIÓN

Descripción Termohigrómetro

Marca, Modelo Fluke, 971 Nº de Serie 38910823

-20 °C a 60 °C / 5 %HR a 95 %HR Rango de Medida

Mínima División 0,1 °C / 0,1 %HR

Identificación Cliente N/A Ubicación N/A

CONDICIONES Y FECHA DE CALIBRACIÓN

Metodo Comparación Directa con Patrón Trazable

Norma de Referencia

Procedimiento de Calibración PCE 131 / 700 - 310

Fecha de Calibración 2017-10-02 Próxima Calibración N/A

Sello de Calibración B-26535

CONDICIONES AMBIENTALES

Lugar de Calibración Cesmec S.A. - Laboratorio de Temperatura

Temperatura (25 ± 5) °C (32 ± 5) %HR Humedad

TRAZABILIDAD DEL PATRON **Temperatura** Humedad

Descripción Sistema Termométrico Digital Termohigrómetro

Codigo Interno TR-27_TR-5 TC-16 Certificado Nº **DAkkS 00277** SMD-57700 Vigencia 2018-07-14 2018-09-13

Trazabilidad LCPN - Temperatura, Chile LC - Temperatura, CESMEC S.A.

RESULTADOS (°C)

Calibrando	Patrón	Error	U(k = 2)
10,0	10,0	0,0	0,5
20,0	20,0	0,0	0,5
30,0	30,0	0,0	0,5

RESULTADOS HUMEDAD (%HR)

Calibrando	Patrón	Error	U (k = 2)
30,1	30,7	-0,6	5,0
51,0	50,3	0,7	5,0
71,8	71,8	0,0	5,0

Supervisor LC - Temperatura

El presente certificado de calibración corresponde a un documento oficial y original, emitido por la División de Metrología de CESMEC S.A. Para verificar su autenticidad, visite el sitio web http://www.cesmec.cl/cgi-bin/verificar.cgi

CERTIFICADO DE CALIBRACIÓN

Laboratorio de Calibración Acreditado en la Magnitud Temperatura

Certificado de Calibración: SMD- 58412 Fecha de Emisión: 2018-01-09 Orden de Trabajo: 463278

DATOS DEL CLIENTE Y DEL INSTRUMENTO

Acreditado LC 006

Cliente : ANDES GENERACION SPA.

Dirección : Av. Apoquindo # 4775, Oficina 501 - Las Condes

Descripción del Item : Termohigrómetro

Marca : Fluke
Modelo : 971
Serie y/o código Interno : 38911110
Sello de Calibración : B-29939

DATOS DE TRAZABILIDAD

Patrón Utilizado : Sistema Termométrico Digital Termohigrómetro

Número Identificación: TR-27_TR-5TC-16Marca: FlukeMemmertModelo: 5609HPP 260Certificado de Calibración: DAkkS 00277SMD-57700Próxima Calibración: 2018-07-142018-09-13

Emitido por : LCPN - Temperatura, Chile LC - Temperatura, CESMEC S.A.

Trazabilidad Inmediata : Serie N° 4592 TR-25 TR-23

DATOS DE CALIBRACIÓN

Lugar de la Calibración : Cesmec S.A. - Laboratorio de Temperatura Condiciones Ambientales : (22 ± 5) °C (45 ± 5) %HR

Método / Procedimiento : Comparacion Directa con Patrón Trazable / PCE 131/700-310 Rev.2.0

Fecha de Calibración : 2018-01-08

Los patrones utilizados en la calibración cuentan con trazabilidad a patrones nacionales y/o Internacionales los que a su vez están referidos a patrones primarios de acuerdo al Sistema Internacional (SI).

El Laboratorio de Calibración posee la competencia técnica y cumple con las exigencias de la Norma NCh-ISO 17025 "Requisitos generales para la competencia de los Laboratorios de Ensayo y Calibración".

Los resultados de la calibración estan referidos al momento y condiciones en las cuales fueron efectuadas las mediciones.

Este Certificado de Calibración no puede ser reproducido total o parcialmente, excepto con el permiso del Laboratorio emisor.

El Laboratorio no asume responsabilidad por daños posteriores a la calibración, ocasionados por el mal empleo del instrumento o patrón.

Miguel Marianjel G.

Supervisor LC - Temperatura - Division Metrología

CERTIFICADO DE CALIBRACIÓN

Laboratorio de Calibración Acreditado en la Magnitud Temperatura

Certificado de Calibración: SMD- 58412

Descripción del Item : Termohigrómetro

Rango de Calibración : 10 °C a 30 °C / 30 %HR a 70 %HR

Graduación / Resolución : 0,1 °C / 0,1 %HR

Sello de Calibración : B-29939

RESULTADOS DE LA CALIBRACIÓN

TEMPERATURA (°C)						
Calibrando	Patrón	Error	U(k = 2)			
10,0	10,0	0,0	0,5			
20,0	20,0	0,0	0,5			
29,9	30,0	-0,1	0,5			

HUMEDAD RELATIVA (%HR)							
Calibrando	Patrón	Error	U(k = 2)				
30,0	30,6	-0,6	5,0				
51,3	50,4	0,9	5,0				
71,4	71,0	0,4	5,0				
	-						
	-						
	-						
	-						
	-						

La incertidumbre expandida ha sido estimada multiplicando la incertidumbre estándar por un factor de cobertura k = 2. El valor del mensurando se encuentra razonablemente dentro del intervalo indicado de valores, con una probabilidad de aproximadamente 95%

Observaciones:

CERTIFICADO DE CALIBRACIÓN

Laboratorio de Calibración Acreditado en la Magnitud Temperatura

Certificado de Calibración: SMD- 58412

INFORMACIÓN IMPORTANTE

- El presente certificado de calibración corresponde a un documento oficial y original, emitido por la División de Metrología de CESMEC S.A. Para verificar su autenticidad, visite el sitio web http://www.cesmec.cl/cgi-bin/verificar.cgi
- Los métodos de muestreo que emplea CESMEC S.A. se basan en sistemas estadísticos reconocidos internacionalmente; sin embargo, dichos sistemas no pueden alcanzar un 100% de exactitud y conllevan un mínimo margen de error que no puede ser imputado a CESMEC S.A.
- 3. El uso, alcance o valor estadístico que se de a este documento no podrá ser otro que aquel expresamente establecido en su texto.

Santiago

Avda. Marathon № 2595, Macul Fono: 2350 2100 Fax: 2384 135

Ramón Freire № 50, Parque Industrial Los Libertadores, Colina Av. Las Torres 1375-C, Parque Industrial El Rosal, Huechuraba

Arica

Pje. Angelmó № 2381, Saucache Sur Fono: (56-9) 159 4213

Iquique

Ruta A-16, Kilómetro 10, № 4544, Alto Hospicio Fono: (56-57) 240 5000

Calama

Camino Antofagasta S/N Block ST-29, Parque Industrial APIAC Fono: (56-55) 2340 507

Antofagasta

Avda. Ruta El Cobre № 320, galpón 12, Plaza de Negocios, Sector La Negra Fono: (56-55) 2638 200

Copiapó

Los Carrera Nº 3533, Villa Modelo Fono - Fax: (56-52) 2221 091

Juan Martinez Nº 711 - Fono: (56-52) 233 6939

Concepción

Av. Collao Nº 2137, 2B Block Lote Fono: (56-41) 220 5600 - Fax: (56-41) 2258 3829

Puerto Montt

Calle 1, Bodega 2, Nº 910, Parque Tyrol

Fono: (56-65) 2225 025

Punta Arenas

Avenida Bulnes Nº 01135 Fono: (56-61) 2237 211

www.cesmec.cl

CERTIFICADO DE CALIBRACIÓN

Certificado de Calibración: SMD- 61244 Fecha de Emisión: 2019-03-22 Orden de Trabajo: 480840

DATOS DEL CLIENTE Y DEL INSTRUMENTO

Cliente : TRACTEBEL ENGINEERING S.A.

Dirección : Cerro Colorado Nº 5240, Of. 1601, Edif. Torre Del Pque. II - Las Condes

Descripción del Item : Termohigrómetro

Marca : TESTO

Modelo : 605i

Serie y/o código Interno : 49322552

Sello de Calibración : B49647

DATOS DE TRAZABILIDAD

Patrón Utilizado : Sistema Termométrico Digital Termohigrómetro Vaisala

Número Identificación : TR-29 TR-5 TR-24_TR-23 Marca : Hart Scientific Vaisala Modelo : 5618B M170 Certificado de Calibración : DAkkS 00394 H00205 Próx. Calibración del Patrón 2020-08-31 2020-02-02 : LCPN - Temperatura, Chile Emitido por ENAER, Chile

Trazabilidad Inmediata : Serie N° 4592 2500S-LT

DATOS DE CALIBRACIÓN

Lugar de la Calibración : Cesmec S.A. - Laboratorio de Temperatura

Condiciones Ambientales : (23 ± 5) °C (37 ± 5) %HR

Método / Procedimiento : Comparacion Directa con Patrón Trazable / PCE 131/700-310 Rev.4.0

Fecha de Calibración : 2019-03-21

Los patrones utilizados en la calibración cuentan con trazabilidad a patrones nacionales y/o Internacionales los que a su vez están referidos a patrones primarios de acuerdo al Sistema Internacional (SI).

El Laboratorio de Calibración posee la competencia técnica y cumple con las exigencias de la Norma NCh-ISO 17025 "Requisitos generales para la competencia de los Laboratorios de Ensayo y Calibración".

Los resultados de la calibración estan referidos al momento y condiciones en las cuales fueron efectuadas las mediciones.

Los resultados obtenidos sólo están relacionados a los ítems calibrados.

Este Certificado de Calibración no puede ser reproducido total o parcialmente, excepto con el permiso del Laboratorio emisor.

El Laboratorio no asume responsabilidad por daños posteriores a la calibración, ocasionados por el mal empleo del instrumento o patrón.

Marinka Quezada Nazar Supervisora LC Temperatura

CERTIFICADO DE CALIBRACIÓN

Laboratorio de Calibración Acreditado en la Magnitud Temperatura

Certificado de Calibración: SMD- 61244

Descripción del Item : Termohigrómetro

Rango de Calibración : 0 °C a 40 °C / 20 %HR a 80 %HR

Graduación / Resolución : 0,1 °C / 0,1 %HR

Sello de Calibración : B49647

RESULTADOS DE LA CALIBRACIÓN

Т	EMPERATURA (
Calibrando	Patrón	Error	U(k = 2)
0,0	0,0	0,0	0,5
20,1	20,0	0,1	0,5
40,1	40,0	0,1	0,5
	-	1	-
	-		i
	-		1
		-	4
	1	1	-

HUMEDAD RELATIVA (%HR)						
Calibrando	Patrón	Error	U(k = 2)			
22,8	20,2	2,6	5,0			
51,0	50,4	0,6	5,0			
80,0	79,9	0,1	5,0			
	/					

Los puntos <30 % HR o > 80 % HR indicados en el patrón, se encuentran fuera de acreditación pero trazable.

CESMEC

La incertidumbre expandida ha sido estimada multiplicando la incertidumbre estándar por un factor de cobertura k = 2. El valor del mensurando se encuentra razonablemente dentro del intervalo indicado de valores, con una probabilidad de aproximadamente 95%

Observaciones:

CERTIFICADO DE CALIBRACIÓN

Laboratorio de Calibración Acreditado en la Magnitud Temperatura

Certificado de Calibración: SMD- 61244

INFORMACIÓN IMPORTANTE

- El presente certificado de calibración corresponde a un documento oficial y original, emitido por la División de Metrología de CESMEC S.A. Para verificar su autenticidad, visite el sitio web http://www.cesmec.cl/cgi-bin/verificar.cgi
- Los métodos de muestreo que emplea CESMEC S.A. se basan en sistemas estadísticos reconocidos internacionalmente; sin embargo, dichos sistemas no pueden alcanzar un 100% de exactitud y conllevan un mínimo margen de error que no puede ser imputado a CESMEC S.A.
- 3. El uso, alcance o valor estadístico que se de a este documento no podrá ser otro que aquel expresamente establecido en su texto.

Santiago

Avda. Marathon № 2595, Macul Fono: 2350 2100 Fax: 2384 135

Arica

Pje. Angelmó № 2381, Saucache Sur Fono: (56-9) 159 4213 Iquique

Ruta A-16, Kilómetro 10, № 4544, Alto Hospicio Fono: (56-57) 240 5000

Calama

Camino Antofagasta S/N Block ST-29, Parque Industrial APIAC Fono: (56-55) 2340 507

Antofagasta

Avda. Ruta El Cobre № 320, galpón 12, Plaza de Negocios, Sector La Negra Fono: (56-55) 2638 200

Copiapó

Los Carrera Nº 3533, Villa Modelo Fono - Fax: (56-52) 2221 091

Juan Martinez Nº 711 - Fono: (56-52) 233 6939

Concepción

Av. Collao Nº 2137, 2B Block Lote Fono: (56-41) 220 5600 - Fax: (56-41) 2258 3829

Puerto Montt

Calle 1, Bodega 2, Nº 910, Parque Tyrol

Fono: (56-65) 2225 025


Punta Arenas

Avenida Bulnes № 01135

Fono: (56-61) 2237 211

www.cesmec.cl

CERTIFICADO DE CALIBRACIÓN

Temperatura Acredi

Certificado de Calibración: SMD- 61249 Fecha de Emisión: 2019-03-22

Acreditación LC 006
Orden de Trabajo: 480840

INN - CHILE

SISTEMA NACIONAL DE ACREDITACION

DATOS DEL CLIENTE Y DEL INSTRUMENTO

Cliente : TRACTEBEL ENGINEERING S.A.

Dirección : Cerro Colorado Nº 5240, Of. 1601, Edif. Torre Del Pque. II - Las Condes

Descripción del Item : Termohigrómetro

Marca : TESTO

Modelo : 405i

Serie y/o código Interno : 48927256

Sello de Calibración : B49648

DATOS DE TRAZABILIDAD

Patrón Utilizado : Sistema Termométrico Digital

Número Identificación : TR-29_TR-5 Marca : Hart Scientific

Modelo : 5618B

Certificado de Calibración : DAkkS 00394 Próx. Calibración del Patrón : 2020-08-31

Emitido por : LCPN - Temperatura, Chile

Trazabilidad Inmediata : Serie N° 4592

DATOS DE CALIBRACIÓN

Lugar de la Calibración : Cesmec S.A. - Laboratorio de Temperatura Condiciones Ambientales : (23 ± 5) °C (37 ± 5) %HR

Método / Procedimiento : Comparacion Directa con Patrón Trazable / PCE 131/700-310 Rev.4.0

Fecha de Calibración : 2019-03-21

Los patrones utilizados en la calibración cuentan con trazabilidad a patrones nacionales y/o Internacionales los que a su vez están referidos a patrones primarios de acuerdo al Sistema Internacional (SI).

El Laboratorio de Calibración posee la competencia técnica y cumple con las exigencias de la Norma NCh-ISO 17025 "Requisitos generales para la competencia de los Laboratorios de Ensayo y Calibración".

Los resultados de la calibración estan referidos al momento y condiciones en las cuales fueron efectuadas las mediciones.

Los resultados obtenidos sólo están relacionados a los ítems calibrados.

Este Certificado de Calibración no puede ser reproducido total o parcialmente, excepto con el permiso del Laboratorio emisor.

El Laboratorio no asume responsabilidad por daños posteriores a la calibración, ocasionados por el mal empleo del instrumento o patrón.

Marinka Quezada Nazar Supervisora LC Temperatura

CERTIFICADO DE CALIBRACIÓN

Laboratorio de Calibración Acreditado en la Magnitud Temperatura

Certificado de Calibración: SMD- 61249

Descripción del Item : Termohigrómetro / Temperatura

Rango de Calibración : 0 °C a 40 °C

Graduación / Resolución : 0,1 °C Sello de Calibración : B49648

RESULTADOS DE LA CALIBRACIÓN

RESULTADOS (°C)

Calibrando	Patrón	Error	U (k = 2)
0,3	0,0	0,3	0,5
20,0	20,0	0,0	0,5
39,9	40,0	-0,1	0,5
			-
		4	
			

CESMEC

La incertidumbre expandida ha sido estimada multiplicando la incertidumbre estándar por un factor de cobertura k = 2. El valor del calibrando se encuentra razonablemente dentro del intervalo indicado de valores, con una probabilidad de aproximadamente 95%

Observaciones:

CERTIFICADO DE CALIBRACIÓN

Laboratorio de Calibración Acreditado en la Magnitud Temperatura

Certificado de Calibración: SMD- 61249

INFORMACIÓN IMPORTANTE

- El presente certificado de calibración corresponde a un documento oficial y original, emitido por la División de Metrología de CESMEC S.A. Para verificar su autenticidad, visite el sitio web http://www.cesmec.cl/cgi-bin/verificar.cgi
- Los métodos de muestreo que emplea CESMEC S.A. se basan en sistemas estadísticos reconocidos internacionalmente; sin embargo, dichos sistemas no pueden alcanzar un 100% de exactitud y conllevan un mínimo margen de error que no puede ser imputado a CESMEC S.A.
- 3. El uso, alcance o valor estadístico que se de a este documento no podrá ser otro que aquel expresamente establecido en su texto.

Santiago

Avda. Marathon № 2595, Macul Fono: 2350 2100 Fax: 2384 135

Arica

Pje. Angelmó № 2381, Saucache Sur Fono: (56-9) 159 4213 Iquique

Ruta A-16, Kilómetro 10, № 4544, Alto Hospicio Fono: (56-57) 240 5000

Calama

Camino Antofagasta S/N Block ST-29, Parque Industrial APIAC Fono: (56-55) 2340 507

Antofagasta

Avda. Ruta El Cobre № 320, galpón 12, Plaza de Negocios, Sector La Negra Fono: (56-55) 2638 200

Copiapó

Los Carrera № 3533, Villa Modelo Fono - Fax: (56-52) 2221 091

Juan Martinez Nº 711 - Fono: (56-52) 233 6939

Concepción

Av. Collao Nº 2137, 2B Block Lote Fono: (56-41) 220 5600 - Fax: (56-41) 2258 3829

Puerto Montt

Calle 1, Bodega 2, № 910, Parque Tyrol Fono: (56-65) 2225 025 Punta Arenas

Avenida Bulnes Nº 01135 Fono: (56-61) 2237 211

www.cesmec.cl

Calibration Certificate

People for Process Automation

Endress+Hauser (Chile) Ltd.

Avenida Los Jardines # 936, Ciudad Empresarial, Huechuraba, Santiago - Chile

Tel.: +56 2 239 89 100

Certificado nº Fecha calibración K9P0458EH 25 Sep 2017

Datos del cliente

Nombre Empresa Electrica Diego de Almagro

empresa

Dirección Cerro El Plomo 5630

C.P. / Población Santiago

Nº de pedido

Lugar de la calibración

Nombre empresa Endress + Hauser

Localización Dirección

Huechuraba

C.P. / Población

Avenida Los Jardines 936

Santiago Persona de Jose Acevedo

contacto

28 000 kg/h 0 20 mΑ

Rango de medición Rango de calibración

Señal de salida

Error máximo permitido (EMP)

0.50

percentOfReading

Datos del Instrumento(UUT)

Modelo **TCM 028K** Nº de serie 12078126

Descripción

TRICOR Fabricante **TRICOR** Nº de Tag Dirección del Bus HART

Water Medio Density 1 kg/liter

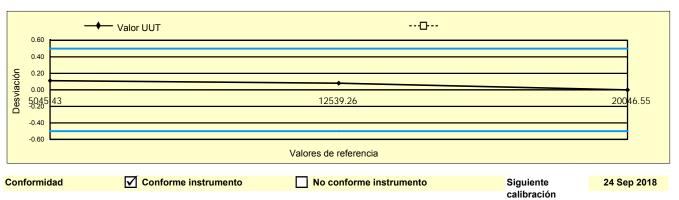
Accesorios

Tipo	Descripción	Nº de serie
Pressure	PMP135	JB175A01052
TemperatureProcess	TR44	JC00B414300
Temperature Amb	TMR31	JB03F8042BA
Mobile Flow Lab	Flow Calibration System	3000506155

estándares utilizados

Descripción	Nº de serie	Certificado nº	Fecha calibración	Fecha caducidad
Promass DN08	JC02D402000	30387942	13 Jan 2017	13 Jan 2018
Promass DN25	JC02D502000	30387867	13 Jan 2017	13 Jan 2018
Promass DN50	JC02D702000	30387878	13 Jan 2017	13 Jan 2018

Método de calibración (SOP)


Condiciones ambientales

С Temperatura ambiente (21 ± 2) Humedad ambiente (70 ± 10)

Valores calibración encontrados (as found)

Punto de prueba	Set point	Valor de referencia	Salida UUT	Valor UUT	Desviación*	MPE
	kg/h	kg/h	mA	kg/h	%	%
1	5 000.00	5 045.43	6.89	5 050.76	0.11	0.50
2	12 500.00	12 539.26	11.17	12 548.94	0.08	0.50
3	20 000.00	20 046.55	15.45	20 045.58	0.00	0.50

Max. Desviación UUT/PLS respecto la referencia

Calibration Certificate

Endress+Hauser (Chile) Ltd.

Avenida Los Jardines # 936, Ciudad Empresarial, Huechuraba, Santiago - Chile

Tel.: +56 2 239 89 100

People for Process Automation

Certificado nº Fecha calibración

K9P0458EH 25 Sep 2017

Observaciones

Equipo se encuentra dentro del Error Maximo Permitido por el Cliente.

Este certificado de Calibración solo puede ser publicado de forma completaLos resultados de la medición y el estado de cumplimiento de las especificaciones se refieren únicamente al instrumento calibrado.

Eduardo Herrera

Fecha de emisión

25 Sep 2017

Servicio Técnico

Eduardo Herrera

Firma

Fin del Certificado

CERTIFICADO DE CALIBRACIÓN Nº SMI-98194P Orden de Trabajo Nº 28248-1 Fecha de emisión: 01 de marzo de 2019 IDENTIFICACIÓN DEL CLIENTE Nombre PROTERM S.A. AV. SANHUEZA Nº 1825 - CONCEPCIÓN Dirección : CARACTERÍSTICAS DEL SISTEMA DE MEDICIÓN CALIBRADO Descripción del Ítem TRANSMISOR DE PRESIÓN BTU CONTROLS C9080036 Marca Modelo Serie 16141385 Código interno NO TIENE Intervalo de indicación 0 a 40 mbar Graduación/Resolución 0.1 mbar CONDICIONES DE CALIBRACIÓN Fecha de calibración 28 de febrero de 2019 Lugar de Calibración Laboratorio de Calibracion Magnitud Presion SMI SpA Tª media durante la calibración (20±2)°C HRA durante la calibración (36±5)%H.R. Método de calibración Comparación directa con manómetro patrón Procedimiento de calibración SMI-PT01-IPRE01 - DKD-R-6-1 V.2:2014 Secuencia 8 Intervalo calibrado 0 a 40 mbar Otras condiciones de la calibración Medio de transmisión de Presión: AIRE posición vertical Equipo calibrado en: Plano de referencia en la parte inferior de EC TRAZABILIDAD DEL SISTEMA PATRÓN DE CALIBRACIÓN Calibrador de Presión (-1 a 2 bar) Patrón utilizado Numero Identificación P17 Marca FLUKE Modelo 719-30G Certificado de calibración Nº 17-ER-CA-6277 Próxima calibración 31 de octubre de 2019 Emitido por DTS Trazabilidad inmediata DTS La incertidumbre expandida ha sido estimada multiplicando la incertidumbre estandar por el factor de cobertura k = 2. El valor del mesurando se encuentra dentro del intervalo indicado de valores con una probabilidad del 95% Los patrones utilizados en la calibración cuentan con trazabilidad a patrones nacionales y/o internacionales los que a su vez están referidos a patrones primarios de acuerdo al Sistema Internacional de Unidades (SI). El Laboratono de Calibración de SMI posee la competencia técnica y cumple con las exigencias de la Norma NCh-ISO 17025 "Requisitos Generales para la Competencia de los Laboratorios de Ensayo y Calibración SMI no asume responsabilidades por daños posteriores a la calibración ocasionados por el mai empleo de instrumentos o por intervención de personas ajenas a nuestro servicio. Los resultados de la calibración están referidos al momento y condiciones en las cuales fueron efectuadas las mediciones. Los resultados de la calibración son aplicables solo al item calibrado e identificado en el presente certificado. Este certificado de calibración no puede ser reproducido total o parclaimente, excepto con el permiso de SMI.

Gerente de Calidad SMI SpA

TABLA DE RESULTADOS

Leyenda

SP: Sistema Patrón de Calibración EC: Elemento Calibrado

E.T: Relativo a escala total

Presión	Lectura Call	brando (Corriente)		Lectura Ca	ilibrando EC			incertidumbre
Patrón SP	Ascendente	Descendente	Promedio	Ascendente	Descendente	Promedio	Error	U (k=2)
mbar	mA	mA	mΑ	mbar	mbar	mbar	mbar	mbar
0,000	4,050	4,061	4,061	0,000	0,000	0,000	0,000	0,018
4,000	5,631	5,654	5,634	3,951	4,009	3,980	-0,020	0,038
8,000	7,234	7,225	7,226	7,997	7,974	7,985	-0,014	0,023
12,000	8,820	8,802	8,819	12,000	11,955	11,978	-0,022	0,032
16,000	10,405	10,392	10,412	16,001	15,968	15,985	-0,015	0,026
20,000	12,029	12,004	12,013	20,101	20,037	20,069	0,069	0,041
24,000	13,607	13,588	13,596	24,084	24,036	24,060	0,060	0,033
28,000	15,162	15,183	15,167	28,009	28,052	28,035	0,035	0,036
32,000	16,742	16,742	16,732	31,997	31,997	31,997	-0,003	0,018
36,000	18,290	18,320	18,337	35,905	35,980	35,942	-0,058	0,047
40,000	19,908	19,897	19,881	39,989	39,961	39,975	0,025	0,024

*Nota

Indicador usado para la lectura en mA es un Multitester Fluke de propiedad de SMI SpA

---Fin del Certificado de Calibración---

ANEXO E – ANÁLISIS DE COMBUSTIBLE

Fono: (56) (2) 3671732 ; E-mail: <u>iherrera@otihdl.com</u>
Empresa Certificada ISO 9001:2008 por ABS con certificado # 39144

Cliente : EMPRESA ELECTRICA DIEGO DE ALMAGRO SPA.

Dirección : CERRO EL PLOMO 5630 Of. 1401 A, LAS CONDES, SANTIAGO

Ref. Cliente : SELLO 6265

Nuestra Ref. : OTICH19-20071 / 3426

Lugar : CENTRAL TERMOELECTRICA DIEGO DE ALMAGRO

Producto⁽¹⁾ : PETROLEO DIESEL GRADO A1

 $\mbox{Muestra Obtenida por}^{(2)} \hspace{1.5cm} : \hspace{0.5cm} \mbox{OIL TEST INTERNACIONAL DE CHILE S.A.}$

Muestra obtenida de : TG-2 / POTENCIA MAXIMA

Fecha de Muestreo : 06/03/2019 01:05

Analizada por : OIL TEST INTERNACIONAL DE CHILE S.A.

Fecha de Informe : 22-03-2019

REPORTE DE ANALISIS					
Prueba	Unidades	Métodos	Especificaciones	Resultados	
Calor de Combustión Bruto	Btu/lb	ASTM D4868	Informar	19.649	
Calor de Combustión Neto	Btu/lb	ASTM D4868	Informar	18.433	
Viscosidad Cinemática, 100°F (37.8°C)	mm²/s	ASTM D445	0,5 Mín 5,8 Máx.	3,485	
Viscosidad Cinemática, 122°F (50.0°C)	mm²/s	ASTM D445	Informar	2,385	
Viscosidad Cinemática, 210°F (98.9°C)	mm²/s	ASTM D445	Informar	1,103	
Gravedad Específica, 60°F (15,6°C)		ASTM D1298	Informar	0,8408	
Gravedad Específica, 100°F (37,8°C)		ASTM D1298	Informar	0,8256	
Punto de Escurrimiento	°C	ASTM D97	-7 Máx.	-18	
Punto de Inflamación	°C	ASTM D93	Informar	66,5	
Destilación, Punto Inicial de Ebullición	°C	ASTM D86	Informar	174,5	
Destilación, 10% Rec.	°C	ASTM D86	Informar	209,0	
Destilación, 50% Rec.	°C	ASTM D86	Informar	264,0	
Destilación, 90% Rec.	°C	ASTM D86	338 Máx.	331,0	
Residuo Carbón Ramsbottom, 100%	% m/m	ASTM D524	Informar	0,05	
Azufre	% m/m	ASTM D4294	Informar	0,0012	
Carbono	% m/m	ASTM D5291	Informar	85,02	
Hidrógeno	% m/m	ASTM D5291	Informar	14,07	
Nitrógeno	% m/m	ASTM D5291	Informar	<0,18	
Cenizas	ppm	ASTM D482	100 Máx.	<10	
Sodio	ppm	ASTM D3605	1,0 Máx.	<0,1	
Potasio	ppm	ASTM D3605	1,0 Máx.	<0,1	
/anadio	ppm	ASTM D3605	0,5 Máx.	<0,1	
Calcio	ppm	ASTM D3605	2,0 Máx.	<0,1	
Plomo	ppm	ASTM D3605	1,0 Máx.	<0,1	
Agua y Sedimentos por Centrifugación	% v/v	ASTM D1796	0,10 Máx.	0,00	
Agua por Karl Fischer	ppm	ASTM E203	100 Máx.	73	
Punto de Obstrucción de Filtro en Frío	°C	ASTM D6371	Informar	-6	
ndice de Cetano Calculado		ASTM D976	40 Mín.	52,5	
Código ISO	4/6/14	ISO 4406-99	17/16/13	16/15/13	
Partículas > 4 µm	Partículas/ml	Pore Blockage	1300 Máx.	462	
Partículas > 6 µm	Partículas/ml	Pore Blockage	640 Máx.	251	
Partículas > 14 µm	Partículas/ml	Pore Blockage	80 Máx.	42	
Código NAS	5-15 μm	SAE AS 4059	10 Máx.	7	

Observaciones:

Análisis desarrollados de acuerdo a Protocolos:

GE 41047p - Heavy Duty Gas Turbine Liquid Fuel Specifications

GEK 110483c - Cleanliness Requirements for Power Plant Instalation, Commissioning, and Maintenance.

JORGE HERRERA GEDERLINI GERENTE DE LABORATORIO

⁽¹⁾ Descrito según el cliente

⁽²⁾ Los análisis reportados corresponden a la muestra suministrada al laboratorio por (ver arriba "Muestra obtenida por")

⁽³⁾ Ensayo Sub Contratado

⁽⁴⁾ Ensayo no se encuentra dentro del alcance de Acreditación.

Fono: (56) (2) 3671732 ; E-mail: <u>iherrera@otihdl.com</u> Empresa Certificada ISO 9001:2008 por ABS con certificado # 39144

Cliente : EMPRESA ELECTRICA DIEGO DE ALMAGRO SPA.

Dirección : CERRO EL PLOMO 5630 Of. 1401 A, LAS CONDES, SANTIAGO

Ref. Cliente : SELLO 6266

Nuestra Ref. : OTICH19-20071 / 3427

Lugar : CENTRAL TERMOELECTRICA DIEGO DE ALMAGRO

Producto⁽¹⁾ : PETROLEO DIESEL GRADO A1

Muestra Obtenida por (2) : OIL TEST INTERNACIONAL DE CHILE S.A.

Muestra obtenida de : TG-2 / POTENCIA 10MW

Fecha de Muestreo : 06/03/2019 21:16

Analizada por : OIL TEST INTERNACIONAL DE CHILE S.A.

: 22-03-2019 Fecha de Informe

REPORTE DE ANALISIS								
Prueba Unidades Métodos Especificaciones Resultados								
Calor de Combustión Bruto	Btu/lb	ASTM D4868	Informar	19.651				
Calor de Combustión Neto	Btu/lb	ASTM D4868	Informar	18.434				
Gravedad Específica, 60°F (15,6°C)		ASTM D1298	Informar	0,8403				
Gravedad Específica, 100°F (37,8°C)		ASTM D1298	Informar	0,8251				

Observaciones:

S/Observaciones.

JORGE HERRERA GEDERLINI GERENTE DE LABORATORIO

⁽¹) Descrito según el cliente (²) Los análisis reportados corresponden a la muestra suministrada al laboratorio por (ver arriba "Muestra obtenida por")

⁽³⁾ Ensayo Sub Contratado
(4) Ensayo no se encuentra dentro del alcance de Acreditación.

Cliente

Los Castaños 1100, La Greda, Puchuncaví

Fono: (56) (2) 3671732 ; E-mail: <u>iherrera@otihdl.com</u> Empresa Certificada ISO 9001:2008 por ABS con certificado # 39144

: EMPRESA ELECTRICA DIEGO DE ALMAGRO SPA.

Dirección : CERRO EL PLOMO 5630 Of. 1401 A, LAS CONDES, SANTIAGO

Ref. Cliente : SELLO 6267

Nuestra Ref. : OTICH19-20071 / 3428

Lugar : CENTRAL TERMOELECTRICA DIEGO DE ALMAGRO

Producto⁽¹⁾ : PETROLEO DIESEL GRADO A1

Muestra Obtenida por (2) : OIL TEST INTERNACIONAL DE CHILE S.A.

Muestra obtenida de : TG-2 / POTENCIA 16MW

Fecha de Muestreo : 06/03/2019 22:02

Analizada por : OIL TEST INTERNACIONAL DE CHILE S.A.

: 22-03-2019 Fecha de Informe

REPORTE DE ANALISIS								
Prueba Unidades Métodos Especificaciones Resultados								
Calor de Combustión Bruto	Btu/lb	ASTM D4868	Informar	19.653				
Calor de Combustión Neto	Btu/lb	ASTM D4868	Informar	18.435				
Gravedad Específica, 60°F (15,6°C)		ASTM D1298	Informar	0,8403				
Gravedad Específica, 100°F (37,8°C)		ASTM D1298	Informar	0,8251				

Observaciones:

S/Observaciones.

JORGE HERRERA GEDERLINI GERENTE DE LABORATORIO

⁽¹) Descrito según el cliente (²) Los análisis reportados corresponden a la muestra suministrada al laboratorio por (ver arriba "Muestra obtenida por")

⁽³⁾ Ensayo Sub Contratado
(4) Ensayo no se encuentra dentro del alcance de Acreditación.

Fono: (56) (2) 3671732 ; E-mail: <u>iherrera@otihdl.com</u>

Empresa Certificada ISO 9001:2008 por ABS con certificado # 39144

Cliente : EMPRESA ELECTRICA DIEGO DE ALMAGRO SPA.

Dirección : CERRO EL PLOMO 5630 Of. 1401 A, LAS CONDES, SANTIAGO

Ref. Cliente : SELLO 6268

Nuestra Ref. : OTICH19-20071 / 3429

Lugar : CENTRAL TERMOELECTRICA DIEGO DE ALMAGRO

Producto⁽¹⁾ : PETROLEO DIESEL GRADO A1

Muestra Obtenida por (2) : OIL TEST INTERNACIONAL DE CHILE S.A.

Muestra obtenida de : TG-2 / POTENCIA 23MW

Fecha de Muestreo : 06/03/2019 22:43

Analizada por : OIL TEST INTERNACIONAL DE CHILE S.A.

: 22-03-2019 Fecha de Informe

REPORTE DE ANALISIS					
Prueba	Unidades	Métodos	Especificaciones	Resultados	
Calor de Combustión Bruto	Btu/lb	ASTM D4868	Informar	19.653	
Calor de Combustión Neto	Btu/lb	ASTM D4868	Informar	18.436	
Gravedad Específica, 60°F (15,6°C)		ASTM D1298	Informar	0,8403	
Gravedad Específica, 100°F (37,8°C)		ASTM D1298	Informar	0,8251	

Observaciones:

S/Observaciones.

JORGE HERRERA GEDERLINI GERENTE DE LABORATORIO

Este reporte de análisis no puede ser reproducido total o parcialmente sin la autorización por escrito de OIL TEST INTERNACIONAL DE CHILE S.A.

FLOTI-035-CH Emisión 2016-11-08 / Rev. # 04 4 de 8

⁽¹) Descrito según el cliente (²) Los análisis reportados corresponden a la muestra suministrada al laboratorio por (ver arriba "Muestra obtenida por")

⁽³⁾ Ensayo Sub Contratado
(4) Ensayo no se encuentra dentro del alcance de Acreditación.

Fono: (56) (2) 3671732 ; E-mail: <u>iherrera@otihdl.com</u>

Empresa Certificada ISO 9001:2008 por ABS con certificado # 39144

Cliente : EMPRESA ELECTRICA DIEGO DE ALMAGRO SPA.

Dirección : CERRO EL PLOMO 5630 Of. 1401 A, LAS CONDES, SANTIAGO

Ref. Cliente : SELLO 6269

Nuestra Ref. : OTICH19-20071 / 3430

Lugar : CENTRAL TERMOELECTRICA DIEGO DE ALMAGRO

Producto⁽¹⁾ : PETROLEO DIESEL GRADO A1

Muestra Obtenida por (2) : OIL TEST INTERNACIONAL DE CHILE S.A.

Muestra obtenida de : TG-2 / POTENCIA 30MW

Fecha de Muestreo : 06/03/2019 23:30

Analizada por : OIL TEST INTERNACIONAL DE CHILE S.A.

: 22-03-2019 Fecha de Informe

REPORTE DE ANALISIS						
Prueba	Unidades	Métodos	Especificaciones	Resultados		
Calor de Combustión Bruto	Btu/lb	ASTM D4868	Informar	19.652		
Calor de Combustión Neto	Btu/lb	ASTM D4868	Informar	18.435		
Gravedad Específica, 60°F (15,6°C)		ASTM D1298	Informar	0,8403		
Gravedad Específica, 100°F (37,8°C)		ASTM D1298	Informar	0,8251		

Observaciones:

S/Observaciones.

JORGE HERRERA GEDERLINI GERENTE DE LABORATORIO

⁽¹) Descrito según el cliente (²) Los análisis reportados corresponden a la muestra suministrada al laboratorio por (ver arriba "Muestra obtenida por")

⁽³⁾ Ensayo Sub Contratado
(4) Ensayo no se encuentra dentro del alcance de Acreditación.

Fono: (56) (2) 3671732 ; E-mail: <u>iherrera@otihdl.com</u> Empresa Certificada ISO 9001:2008 por ABS con certificado # 39144

Cliente : EMPRESA ELECTRICA DIEGO DE ALMAGRO SPA.

Dirección : CERRO EL PLOMO 5630 Of. 1401 A, LAS CONDES, SANTIAGO

Ref. Cliente : SELLO 6270

Nuestra Ref. : OTICH19-20071 / 3431

Lugar : CENTRAL TERMOELECTRICA DIEGO DE ALMAGRO

Producto⁽¹⁾ : PETROLEO DIESEL GRADO A1

Muestra Obtenida por (2) : OIL TEST INTERNACIONAL DE CHILE S.A.

Muestra obtenida de : TG-2 / POTENCIA 4MW Fecha de Muestreo : 07/03/2019 00:13

Analizada por : OIL TEST INTERNACIONAL DE CHILE S.A.

: 22-03-2019 Fecha de Informe

	REPOR [*]	TE DE ANALISIS	3	
Prueba	Unidades	Métodos	Especificaciones	Resultados
Calor de Combustión Bruto	Btu/lb	ASTM D4868	Informar	19.653
Calor de Combustión Neto	Btu/lb	ASTM D4868	Informar	18.436
Gravedad Específica, 60°F (15,6°C)		ASTM D1298	Informar	0,8403
Gravedad Específica, 100°F (37,8°C)		ASTM D1298	Informar	0,8251

Observaciones:

S/Observaciones.

JORGE HERRERA GEDERLINI GERENTE DE LABORATORIO

⁽¹) Descrito según el cliente (²) Los análisis reportados corresponden a la muestra suministrada al laboratorio por (ver arriba "Muestra obtenida por")

⁽³⁾ Ensayo Sub Contratado
(4) Ensayo no se encuentra dentro del alcance de Acreditación.

Fono: (56) (2) 3671732 ; E-mail: <u>iherrera@otihdl.com</u>

Empresa Certificada ISO 9001:2008 por ABS con certificado # 39144

Cliente : EMPRESA ELECTRICA DIEGO DE ALMAGRO SPA.

Dirección : CERRO EL PLOMO 5630 Of. 1401 A, LAS CONDES, SANTIAGO

Ref. Cliente : SELLO 6271

Nuestra Ref. : OTICH19-20071 / 3432

Lugar : CENTRAL TERMOELECTRICA DIEGO DE ALMAGRO

Producto⁽¹⁾ : PETROLEO DIESEL GRADO A1

Muestra Obtenida por (2) : OIL TEST INTERNACIONAL DE CHILE S.A.

Muestra obtenida de : TG-2 / POTENCIA 2MW Fecha de Muestreo : 07/03/2019 00:53

Analizada por : OIL TEST INTERNACIONAL DE CHILE S.A.

: 22-03-2019 Fecha de Informe

	REPOR'	TE DE ANALISIS	S	
Prueba	Unidades	Métodos	Especificaciones	Resultados
Calor de Combustión Bruto	Btu/lb	ASTM D4868	Informar	19.652
Calor de Combustión Neto	Btu/lb	ASTM D4868	Informar	18.435
Gravedad Específica, 60°F (15,6°C)		ASTM D1298	Informar	0,8403
Gravedad Específica, 100°F (37,8°C)		ASTM D1298	Informar	0,8251

Observaciones:

S/Observaciones.

JORGE HERRERA GEDERLINI GERENTE DE LABORATORIO

⁽¹) Descrito según el cliente (²) Los análisis reportados corresponden a la muestra suministrada al laboratorio por (ver arriba "Muestra obtenida por")

⁽³⁾ Ensayo Sub Contratado
(4) Ensayo no se encuentra dentro del alcance de Acreditación.

OTI Chile - Laboratorio

Los Castaños 1100, La Greda, Puchuncaví

Fono: (56) (2) 3671732 ; E-mail: iherrera@otihdl.com
Empresa Certificada ISO 9001:2008 por ABS con certificado # 39144

	FECHA DE EJE	ECUCION DE ANA	ALISIS	
Prueba	Unidades	Métodos	Inicio	Termino
Calor de Combustión Bruto	Btu/lb	ASTM D4868	20-03-2019	20-03-2019
Calor de Combustión Neto	Btu/lb	ASTM D4868	20-03-2019	20-03-2019
Viscosidad Cinemática, 100°F (37.8°C)	mm²/s	ASTM D445	20-03-2019	20-03-2019
Viscosidad Cinemática, 122ºF (50.0ºC)	mm²/s	ASTM D445	20-03-2019	20-03-2019
Viscosidad Cinemática, 210°F (98.9°C)	mm²/s	ASTM D445	20-03-2019	20-03-2019
Gravedad Específica, 60°F (15,6°C)		ASTM D1298	20-03-2019	20-03-2019
Gravedad Específica, 100°F (37,8°C)		ASTM D1298	20-03-2019	20-03-2019
Punto de Escurrimiento	°C	ASTM D97	20-03-2019	20-03-2019
Punto de Inflamación	°C	ASTM D93	22-03-2019	22-03-2019
Destilación, Punto Inicial de Ebullición	°C	ASTM D86	22-03-2019	22-03-2019
Destilación, 10% Rec.	°C	ASTM D86	22-03-2019	22-03-2019
Destilación, 50% Rec.	°C	ASTM D86	22-03-2019	22-03-2019
Destilación, 90% Rec.	°C	ASTM D86	22-03-2019	22-03-2019
Residuo Carbón Ramsbottom, 100%	% m/m	ASTM D524	22-03-2019	22-03-2019
Azufre	% m/m	ASTM D4294	21-03-2019	21-03-2019
Carbono	% m/m	ASTM D5291	22-03-2019	22-03-2019
Hidrógeno	% m/m	ASTM D5291	22-03-2019	22-03-2019
Nitrógeno	% m/m	ASTM D5291	22-03-2019	22-03-2019
Cenizas	ppm	ASTM D482	22-03-2019	22-03-2019
Sodio	ppm	ASTM D3605	22-03-2019	22-03-2019
Potasio	ppm	ASTM D3605	22-03-2019	22-03-2019
Vanadio	ppm	ASTM D3605	22-03-2019	22-03-2019
Calcio	ppm	ASTM D3605	22-03-2019	22-03-2019
Plomo	ppm	ASTM D3605	22-03-2019	22-03-2019
Agua y Sedimentos por Centrifugación	% v/v	ASTM D1796	20-03-2019	20-03-2019
Agua por Karl Fischer	ppm	ASTM E203	22-03-2019	22-03-2019
Punto de Obstrucción de Filtro en Frío	°C	ASTM D6371	20-03-2019	20-03-2019
Índice de Cetano Calculado		ASTM D976	22-03-2019	22-03-2019
Código ISO	4/6/14	ISO 4406-99	19-03-2019	19-03-2019
Partículas > 4 µm	Partículas/ml	Pore Blockage	19-03-2019	19-03-2019
Partículas > 6 µm	Partículas/ml	Pore Blockage	19-03-2019	19-03-2019
Partículas > 14 µm	Partículas/ml	Pore Blockage	19-03-2019	19-03-2019
Código NAS	5-15 μm	SAE AS 4059	19-03-2019	19-03-2019

JORGE HERRERA GEDERLINI **GERENTE DE LABORATORIO**

ANEXO F – MEDICIONES, CÁLCULOS Y GRÁFICOS

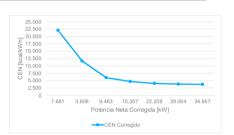
Estado de Carga	Valor[kW]	Horario	P_Neta Promedio [kW	P_Bruta Promedio[kW	Factor de Potencia	SSAA	Temp Amb	HR	dPresion	CC[I/s]	CC[kg/h]
E1	20000	00:20:00 - 00:50:00	1.680	2.124	0,83	286	15,4	75,5	8,98	1,13	3.393
E2	40000	23:40:00 - 00:10:00	3.607	4.061	0,93	284	16,0	74,9	9,03	1,28	3.846
E3	10000	20:50:00 - 21:20:00	9.462	9.956	0,94	290	17,9	69,6	9,32	1,73	5.219
E4	16000	21:30:00 - 22:00:00	15.363	15.880	0,98	287	18,0	68,4	11,88	2,21	6.640
E5	23000	22:10:00 - 22:40:00	22.218	22.784	0,98	283	17,1	72,2	11,94	2,75	8.277
E6	30000	22:50:00 - 23:30:00	29.026	29.666	1,00	286	16,8	73,1	11,99	3,38	10.166
F7	35600	01:00:00 - 01:30:00	34.885	35.591	1.00	280	16.0	72.7	12.63	3.95	11.882

							Meas
Estado de Carga	Carga Ref	PCS [btu/lb]	PCS [kcal/kg]	Temp_comb °C	Densidad Corregida k	CEN [ton/MWh]	CEN [kcal/kwh]
E1	20.000	19.652	10.925	22	0,836	2,020	22.064
E2	40.000	19.653	10.926	22	0,836	1,066	11.647
E3	10.000	19.651	10.925	23	0,835	0,552	6.026
E4	16.000	19.653	10.926	23	0,835	0,432	4.722
E5	23.000	19.653	10.926	22	0,836	0,373	4.070
E6	30.000	19.652	10.925	22	0,836	0,350	3.827
E7	35.600	19.649	10.923	22	0,836	0,341	3.721

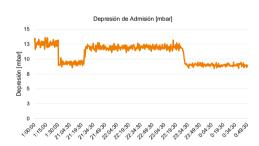
Btu-Kcal	0,252164199	
lb-kg	2,20462442	
Densida	15,6	0,84
Densidad@	37.8	0.82

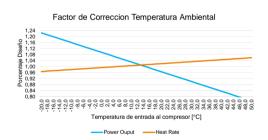
_						dP en Admisión			
Estado de Carga	Valor[kW]	FATR	FATM	FRHR	FRHM	FDRPR	FDRPM	FPFR	FPFM
E1	20.000	1,0155	1,0135	1,0001	1,0005	100	99,9540	0,9353	0,9348
E2	40.000	1,0155	1,0142	1,0001	1,0006	100	99,9565	0,9645	0,9643
E3	10.000	1,0155	1,0167	1,0001	1,0008	100	99,9694	0,9827	0,9826
E4	16.000	1,0155	1,0168	1,0001	1,0007	100	100,0846	0,9880	0,9884
E5	23.000	1,0155	1,0157	1,0001	1,0007	100	100,0873	0,9899	0,9903
E6	30.000	1,0155	1,0152	1,0001	1,0007	100	100,0894	0,9906	0,9913
E7	35.600	1.0155	1.0142	1.0001	1.0005	100	100.1184	0.9907	0.9915

Estado de Carga	Valor[kW]	Temp	HR	HR esp
E1	20.000	15,44	75,49	0,00823
E2	40.000	15,99	74,86	0,00846
E3	10.000	17,92	69,57	0,00889
E4	16.000	17,96	68,44	0,00877
E5	23.000	17,10	72,18	0,00877
E6	30.000	16,75	73,11	0,00867
E7	35.600	15,96	72,72	0,0082


	%	°F	°C
	1,21	0,00	-17,78
Output	0,85	100,00	37,78
	0,97	0,00	-17,78
Heat Rate	1,05	110,00	43,33

https://www.rotronic.com/en/humidity_measurement-feuchtemessung-mesure_de_l_humidity-calculator-feuchterechner-mr


Estado de Carga	Pneta Medida [kW]	Pneta Corregida [kW]	Consumo Corr [kg/h]	CEN_corr [kcal/kwh]	CEN_corr [ton/MWh]	Corrección
E1	1.680	1.681	3.400	22.100	2,023	0,2%
E2	3.607	3.608	3.850	11.660	1,067	0,1%
E3	9.462	9.463	5.211	6.016	0,551	-0,2%
E4	15.363	15.357	6.622	4.711	0,431	-0,2%
E5	22.218	22.208	8.264	4.066	0,372	-0,1%
E6	29.026	29.004	10.155	3.825	0,350	0,0%
E7	34.885	34.857	11.879	3.723	0,341	0,1%


Condiciones Referencia Temperatura °C	17 °C
Humedad Relativa	60 %
Humedad Esp	0,00721 lb_water/lb dry air
Depresion Admision	10 mbar
Factor de Potencia	0,95 -

9	6	H esp
Output	1,00 1,00	0,01 0,02
Heat Rate	1,00	0,01

